Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals
We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO 2 matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2016-01, Vol.4 (16), p.3531-3539 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3539 |
---|---|
container_issue | 16 |
container_start_page | 3531 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 4 |
creator | Mastromatteo, Massimo De Salvador, Davide Napolitani, Enrico Arduca, Elisa Seguini, Gabriele Frascaroli, Jacopo Perego, Michele Nicotra, Giuseppe Spinella, Corrado Lenardi, Cristina Carnera, Alberto |
description | We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO
2
matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already formed and stable NCs; at the same time, we investigated the diffusion of P in SiO
2
matrices shedding light on the atomistic mechanism of P diffusion in SiO
2
. The model parameters were assessed by fitting of P diffusion profiles, measured by time of flight secondary ion mass spectrometry and calibrated by channeling Rutherford backscattering spectrometry. Transmission electron microscopy data provided the NC geometrical parameters. Simulations allowed quantitative description of the emission process of P by the source, the evolution of P diffusivity in the oxide, and P trapping/de-trapping at the SiO
2
/Si NCs interface, extracting the associated thermal energy barriers, providing a decisive description of the system very close to the equilibrium. This fundamental approach on a well-assessed template system provided valuable insights into the nanoscale doping processes, applicable in principle to investigate nanostructures other than Si.
A complete description and modelization of P diffusion in SiO
2
and P trapping in Si NCs embedded in the SiO
2
matrix. |
doi_str_mv | 10.1039/c5tc04287a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C5TC04287A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808066023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-9a4346c176f39d1983bdfdf2a4f5cf4031415f61336343496e2a4247a62d05553</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsNRu3AtZihCddybLEnxBxU1duQjjPHQkzcS5Cdh_72ilghcu53Dvx1kchE4JviSY1VdGjAZzqip9gGYUC1xWgvHDvafyGC0A3nEeRaSS9Qw9P0TrutC_FtEXw1uEvGmCwgbvJwixL0JfQOiCyTZ-BusK3dt8NDENMenxH9LrPpq0hVF3cIKOfBa3-NU5erq5Xjd35erx9r5ZrkpDlRzLWnPGpSGV9Ky2pFbsxXrrqeZeGM8xI5wILwljkmWyli6_KK-0pBYLIdgcne9yhxQ_JgdjuwlgXNfp3sUJWqKwwlJiyjJ6sUNNigDJ-XZIYaPTtiW4_S6xbcS6-SlxmeGzHZzA7Lm_ktkX1yZudQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808066023</pqid></control><display><type>article</type><title>Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mastromatteo, Massimo ; De Salvador, Davide ; Napolitani, Enrico ; Arduca, Elisa ; Seguini, Gabriele ; Frascaroli, Jacopo ; Perego, Michele ; Nicotra, Giuseppe ; Spinella, Corrado ; Lenardi, Cristina ; Carnera, Alberto</creator><creatorcontrib>Mastromatteo, Massimo ; De Salvador, Davide ; Napolitani, Enrico ; Arduca, Elisa ; Seguini, Gabriele ; Frascaroli, Jacopo ; Perego, Michele ; Nicotra, Giuseppe ; Spinella, Corrado ; Lenardi, Cristina ; Carnera, Alberto</creatorcontrib><description>We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO
2
matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already formed and stable NCs; at the same time, we investigated the diffusion of P in SiO
2
matrices shedding light on the atomistic mechanism of P diffusion in SiO
2
. The model parameters were assessed by fitting of P diffusion profiles, measured by time of flight secondary ion mass spectrometry and calibrated by channeling Rutherford backscattering spectrometry. Transmission electron microscopy data provided the NC geometrical parameters. Simulations allowed quantitative description of the emission process of P by the source, the evolution of P diffusivity in the oxide, and P trapping/de-trapping at the SiO
2
/Si NCs interface, extracting the associated thermal energy barriers, providing a decisive description of the system very close to the equilibrium. This fundamental approach on a well-assessed template system provided valuable insights into the nanoscale doping processes, applicable in principle to investigate nanostructures other than Si.
A complete description and modelization of P diffusion in SiO
2
and P trapping in Si NCs embedded in the SiO
2
matrix.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c5tc04287a</identifier><language>eng</language><subject>Diffusion ; Mathematical models ; Modelling ; Nanocrystals ; Nanostructure ; Silicon ; Silicon dioxide ; Trapping</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2016-01, Vol.4 (16), p.3531-3539</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-9a4346c176f39d1983bdfdf2a4f5cf4031415f61336343496e2a4247a62d05553</citedby><cites>FETCH-LOGICAL-c286t-9a4346c176f39d1983bdfdf2a4f5cf4031415f61336343496e2a4247a62d05553</cites><orcidid>0000-0002-2562-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mastromatteo, Massimo</creatorcontrib><creatorcontrib>De Salvador, Davide</creatorcontrib><creatorcontrib>Napolitani, Enrico</creatorcontrib><creatorcontrib>Arduca, Elisa</creatorcontrib><creatorcontrib>Seguini, Gabriele</creatorcontrib><creatorcontrib>Frascaroli, Jacopo</creatorcontrib><creatorcontrib>Perego, Michele</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Lenardi, Cristina</creatorcontrib><creatorcontrib>Carnera, Alberto</creatorcontrib><title>Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO
2
matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already formed and stable NCs; at the same time, we investigated the diffusion of P in SiO
2
matrices shedding light on the atomistic mechanism of P diffusion in SiO
2
. The model parameters were assessed by fitting of P diffusion profiles, measured by time of flight secondary ion mass spectrometry and calibrated by channeling Rutherford backscattering spectrometry. Transmission electron microscopy data provided the NC geometrical parameters. Simulations allowed quantitative description of the emission process of P by the source, the evolution of P diffusivity in the oxide, and P trapping/de-trapping at the SiO
2
/Si NCs interface, extracting the associated thermal energy barriers, providing a decisive description of the system very close to the equilibrium. This fundamental approach on a well-assessed template system provided valuable insights into the nanoscale doping processes, applicable in principle to investigate nanostructures other than Si.
A complete description and modelization of P diffusion in SiO
2
and P trapping in Si NCs embedded in the SiO
2
matrix.</description><subject>Diffusion</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Trapping</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRsNRu3AtZihCddybLEnxBxU1duQjjPHQkzcS5Cdh_72ilghcu53Dvx1kchE4JviSY1VdGjAZzqip9gGYUC1xWgvHDvafyGC0A3nEeRaSS9Qw9P0TrutC_FtEXw1uEvGmCwgbvJwixL0JfQOiCyTZ-BusK3dt8NDENMenxH9LrPpq0hVF3cIKOfBa3-NU5erq5Xjd35erx9r5ZrkpDlRzLWnPGpSGV9Ky2pFbsxXrrqeZeGM8xI5wILwljkmWyli6_KK-0pBYLIdgcne9yhxQ_JgdjuwlgXNfp3sUJWqKwwlJiyjJ6sUNNigDJ-XZIYaPTtiW4_S6xbcS6-SlxmeGzHZzA7Lm_ktkX1yZudQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Mastromatteo, Massimo</creator><creator>De Salvador, Davide</creator><creator>Napolitani, Enrico</creator><creator>Arduca, Elisa</creator><creator>Seguini, Gabriele</creator><creator>Frascaroli, Jacopo</creator><creator>Perego, Michele</creator><creator>Nicotra, Giuseppe</creator><creator>Spinella, Corrado</creator><creator>Lenardi, Cristina</creator><creator>Carnera, Alberto</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2562-8860</orcidid></search><sort><creationdate>20160101</creationdate><title>Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals</title><author>Mastromatteo, Massimo ; De Salvador, Davide ; Napolitani, Enrico ; Arduca, Elisa ; Seguini, Gabriele ; Frascaroli, Jacopo ; Perego, Michele ; Nicotra, Giuseppe ; Spinella, Corrado ; Lenardi, Cristina ; Carnera, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-9a4346c176f39d1983bdfdf2a4f5cf4031415f61336343496e2a4247a62d05553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Diffusion</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mastromatteo, Massimo</creatorcontrib><creatorcontrib>De Salvador, Davide</creatorcontrib><creatorcontrib>Napolitani, Enrico</creatorcontrib><creatorcontrib>Arduca, Elisa</creatorcontrib><creatorcontrib>Seguini, Gabriele</creatorcontrib><creatorcontrib>Frascaroli, Jacopo</creatorcontrib><creatorcontrib>Perego, Michele</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Lenardi, Cristina</creatorcontrib><creatorcontrib>Carnera, Alberto</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mastromatteo, Massimo</au><au>De Salvador, Davide</au><au>Napolitani, Enrico</au><au>Arduca, Elisa</au><au>Seguini, Gabriele</au><au>Frascaroli, Jacopo</au><au>Perego, Michele</au><au>Nicotra, Giuseppe</au><au>Spinella, Corrado</au><au>Lenardi, Cristina</au><au>Carnera, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>4</volume><issue>16</issue><spage>3531</spage><epage>3539</epage><pages>3531-3539</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO
2
matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already formed and stable NCs; at the same time, we investigated the diffusion of P in SiO
2
matrices shedding light on the atomistic mechanism of P diffusion in SiO
2
. The model parameters were assessed by fitting of P diffusion profiles, measured by time of flight secondary ion mass spectrometry and calibrated by channeling Rutherford backscattering spectrometry. Transmission electron microscopy data provided the NC geometrical parameters. Simulations allowed quantitative description of the emission process of P by the source, the evolution of P diffusivity in the oxide, and P trapping/de-trapping at the SiO
2
/Si NCs interface, extracting the associated thermal energy barriers, providing a decisive description of the system very close to the equilibrium. This fundamental approach on a well-assessed template system provided valuable insights into the nanoscale doping processes, applicable in principle to investigate nanostructures other than Si.
A complete description and modelization of P diffusion in SiO
2
and P trapping in Si NCs embedded in the SiO
2
matrix.</abstract><doi>10.1039/c5tc04287a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2562-8860</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2016-01, Vol.4 (16), p.3531-3539 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C5TC04287A |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Diffusion Mathematical models Modelling Nanocrystals Nanostructure Silicon Silicon dioxide Trapping |
title | Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20phosphorus%20diffusion%20in%20silicon%20oxide%20and%20incorporation%20in%20silicon%20nanocrystals&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Mastromatteo,%20Massimo&rft.date=2016-01-01&rft.volume=4&rft.issue=16&rft.spage=3531&rft.epage=3539&rft.pages=3531-3539&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c5tc04287a&rft_dat=%3Cproquest_cross%3E1808066023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808066023&rft_id=info:pmid/&rfr_iscdi=true |