Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals

We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO 2 matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2016-01, Vol.4 (16), p.3531-3539
Hauptverfasser: Mastromatteo, Massimo, De Salvador, Davide, Napolitani, Enrico, Arduca, Elisa, Seguini, Gabriele, Frascaroli, Jacopo, Perego, Michele, Nicotra, Giuseppe, Spinella, Corrado, Lenardi, Cristina, Carnera, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3539
container_issue 16
container_start_page 3531
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 4
creator Mastromatteo, Massimo
De Salvador, Davide
Napolitani, Enrico
Arduca, Elisa
Seguini, Gabriele
Frascaroli, Jacopo
Perego, Michele
Nicotra, Giuseppe
Spinella, Corrado
Lenardi, Cristina
Carnera, Alberto
description We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO 2 matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already formed and stable NCs; at the same time, we investigated the diffusion of P in SiO 2 matrices shedding light on the atomistic mechanism of P diffusion in SiO 2 . The model parameters were assessed by fitting of P diffusion profiles, measured by time of flight secondary ion mass spectrometry and calibrated by channeling Rutherford backscattering spectrometry. Transmission electron microscopy data provided the NC geometrical parameters. Simulations allowed quantitative description of the emission process of P by the source, the evolution of P diffusivity in the oxide, and P trapping/de-trapping at the SiO 2 /Si NCs interface, extracting the associated thermal energy barriers, providing a decisive description of the system very close to the equilibrium. This fundamental approach on a well-assessed template system provided valuable insights into the nanoscale doping processes, applicable in principle to investigate nanostructures other than Si. A complete description and modelization of P diffusion in SiO 2 and P trapping in Si NCs embedded in the SiO 2 matrix.
doi_str_mv 10.1039/c5tc04287a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C5TC04287A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808066023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-9a4346c176f39d1983bdfdf2a4f5cf4031415f61336343496e2a4247a62d05553</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsNRu3AtZihCddybLEnxBxU1duQjjPHQkzcS5Cdh_72ilghcu53Dvx1kchE4JviSY1VdGjAZzqip9gGYUC1xWgvHDvafyGC0A3nEeRaSS9Qw9P0TrutC_FtEXw1uEvGmCwgbvJwixL0JfQOiCyTZ-BusK3dt8NDENMenxH9LrPpq0hVF3cIKOfBa3-NU5erq5Xjd35erx9r5ZrkpDlRzLWnPGpSGV9Ky2pFbsxXrrqeZeGM8xI5wILwljkmWyli6_KK-0pBYLIdgcne9yhxQ_JgdjuwlgXNfp3sUJWqKwwlJiyjJ6sUNNigDJ-XZIYaPTtiW4_S6xbcS6-SlxmeGzHZzA7Lm_ktkX1yZudQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808066023</pqid></control><display><type>article</type><title>Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mastromatteo, Massimo ; De Salvador, Davide ; Napolitani, Enrico ; Arduca, Elisa ; Seguini, Gabriele ; Frascaroli, Jacopo ; Perego, Michele ; Nicotra, Giuseppe ; Spinella, Corrado ; Lenardi, Cristina ; Carnera, Alberto</creator><creatorcontrib>Mastromatteo, Massimo ; De Salvador, Davide ; Napolitani, Enrico ; Arduca, Elisa ; Seguini, Gabriele ; Frascaroli, Jacopo ; Perego, Michele ; Nicotra, Giuseppe ; Spinella, Corrado ; Lenardi, Cristina ; Carnera, Alberto</creatorcontrib><description>We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO 2 matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already formed and stable NCs; at the same time, we investigated the diffusion of P in SiO 2 matrices shedding light on the atomistic mechanism of P diffusion in SiO 2 . The model parameters were assessed by fitting of P diffusion profiles, measured by time of flight secondary ion mass spectrometry and calibrated by channeling Rutherford backscattering spectrometry. Transmission electron microscopy data provided the NC geometrical parameters. Simulations allowed quantitative description of the emission process of P by the source, the evolution of P diffusivity in the oxide, and P trapping/de-trapping at the SiO 2 /Si NCs interface, extracting the associated thermal energy barriers, providing a decisive description of the system very close to the equilibrium. This fundamental approach on a well-assessed template system provided valuable insights into the nanoscale doping processes, applicable in principle to investigate nanostructures other than Si. A complete description and modelization of P diffusion in SiO 2 and P trapping in Si NCs embedded in the SiO 2 matrix.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c5tc04287a</identifier><language>eng</language><subject>Diffusion ; Mathematical models ; Modelling ; Nanocrystals ; Nanostructure ; Silicon ; Silicon dioxide ; Trapping</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2016-01, Vol.4 (16), p.3531-3539</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-9a4346c176f39d1983bdfdf2a4f5cf4031415f61336343496e2a4247a62d05553</citedby><cites>FETCH-LOGICAL-c286t-9a4346c176f39d1983bdfdf2a4f5cf4031415f61336343496e2a4247a62d05553</cites><orcidid>0000-0002-2562-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mastromatteo, Massimo</creatorcontrib><creatorcontrib>De Salvador, Davide</creatorcontrib><creatorcontrib>Napolitani, Enrico</creatorcontrib><creatorcontrib>Arduca, Elisa</creatorcontrib><creatorcontrib>Seguini, Gabriele</creatorcontrib><creatorcontrib>Frascaroli, Jacopo</creatorcontrib><creatorcontrib>Perego, Michele</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Lenardi, Cristina</creatorcontrib><creatorcontrib>Carnera, Alberto</creatorcontrib><title>Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO 2 matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already formed and stable NCs; at the same time, we investigated the diffusion of P in SiO 2 matrices shedding light on the atomistic mechanism of P diffusion in SiO 2 . The model parameters were assessed by fitting of P diffusion profiles, measured by time of flight secondary ion mass spectrometry and calibrated by channeling Rutherford backscattering spectrometry. Transmission electron microscopy data provided the NC geometrical parameters. Simulations allowed quantitative description of the emission process of P by the source, the evolution of P diffusivity in the oxide, and P trapping/de-trapping at the SiO 2 /Si NCs interface, extracting the associated thermal energy barriers, providing a decisive description of the system very close to the equilibrium. This fundamental approach on a well-assessed template system provided valuable insights into the nanoscale doping processes, applicable in principle to investigate nanostructures other than Si. A complete description and modelization of P diffusion in SiO 2 and P trapping in Si NCs embedded in the SiO 2 matrix.</description><subject>Diffusion</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Trapping</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRsNRu3AtZihCddybLEnxBxU1duQjjPHQkzcS5Cdh_72ilghcu53Dvx1kchE4JviSY1VdGjAZzqip9gGYUC1xWgvHDvafyGC0A3nEeRaSS9Qw9P0TrutC_FtEXw1uEvGmCwgbvJwixL0JfQOiCyTZ-BusK3dt8NDENMenxH9LrPpq0hVF3cIKOfBa3-NU5erq5Xjd35erx9r5ZrkpDlRzLWnPGpSGV9Ky2pFbsxXrrqeZeGM8xI5wILwljkmWyli6_KK-0pBYLIdgcne9yhxQ_JgdjuwlgXNfp3sUJWqKwwlJiyjJ6sUNNigDJ-XZIYaPTtiW4_S6xbcS6-SlxmeGzHZzA7Lm_ktkX1yZudQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Mastromatteo, Massimo</creator><creator>De Salvador, Davide</creator><creator>Napolitani, Enrico</creator><creator>Arduca, Elisa</creator><creator>Seguini, Gabriele</creator><creator>Frascaroli, Jacopo</creator><creator>Perego, Michele</creator><creator>Nicotra, Giuseppe</creator><creator>Spinella, Corrado</creator><creator>Lenardi, Cristina</creator><creator>Carnera, Alberto</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2562-8860</orcidid></search><sort><creationdate>20160101</creationdate><title>Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals</title><author>Mastromatteo, Massimo ; De Salvador, Davide ; Napolitani, Enrico ; Arduca, Elisa ; Seguini, Gabriele ; Frascaroli, Jacopo ; Perego, Michele ; Nicotra, Giuseppe ; Spinella, Corrado ; Lenardi, Cristina ; Carnera, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-9a4346c176f39d1983bdfdf2a4f5cf4031415f61336343496e2a4247a62d05553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Diffusion</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mastromatteo, Massimo</creatorcontrib><creatorcontrib>De Salvador, Davide</creatorcontrib><creatorcontrib>Napolitani, Enrico</creatorcontrib><creatorcontrib>Arduca, Elisa</creatorcontrib><creatorcontrib>Seguini, Gabriele</creatorcontrib><creatorcontrib>Frascaroli, Jacopo</creatorcontrib><creatorcontrib>Perego, Michele</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Lenardi, Cristina</creatorcontrib><creatorcontrib>Carnera, Alberto</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mastromatteo, Massimo</au><au>De Salvador, Davide</au><au>Napolitani, Enrico</au><au>Arduca, Elisa</au><au>Seguini, Gabriele</au><au>Frascaroli, Jacopo</au><au>Perego, Michele</au><au>Nicotra, Giuseppe</au><au>Spinella, Corrado</au><au>Lenardi, Cristina</au><au>Carnera, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>4</volume><issue>16</issue><spage>3531</spage><epage>3539</epage><pages>3531-3539</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>We approached the rate equation modeling of P dopant incorporation in Si nanocrystals (NCs) embedded in the SiO 2 matrix by diffusion from a spatially separated solid source. The experimental approach allows the study of the microscopic parameters regulating the interaction between P and the already formed and stable NCs; at the same time, we investigated the diffusion of P in SiO 2 matrices shedding light on the atomistic mechanism of P diffusion in SiO 2 . The model parameters were assessed by fitting of P diffusion profiles, measured by time of flight secondary ion mass spectrometry and calibrated by channeling Rutherford backscattering spectrometry. Transmission electron microscopy data provided the NC geometrical parameters. Simulations allowed quantitative description of the emission process of P by the source, the evolution of P diffusivity in the oxide, and P trapping/de-trapping at the SiO 2 /Si NCs interface, extracting the associated thermal energy barriers, providing a decisive description of the system very close to the equilibrium. This fundamental approach on a well-assessed template system provided valuable insights into the nanoscale doping processes, applicable in principle to investigate nanostructures other than Si. A complete description and modelization of P diffusion in SiO 2 and P trapping in Si NCs embedded in the SiO 2 matrix.</abstract><doi>10.1039/c5tc04287a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2562-8860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2016-01, Vol.4 (16), p.3531-3539
issn 2050-7526
2050-7534
language eng
recordid cdi_crossref_primary_10_1039_C5TC04287A
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Diffusion
Mathematical models
Modelling
Nanocrystals
Nanostructure
Silicon
Silicon dioxide
Trapping
title Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20phosphorus%20diffusion%20in%20silicon%20oxide%20and%20incorporation%20in%20silicon%20nanocrystals&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Mastromatteo,%20Massimo&rft.date=2016-01-01&rft.volume=4&rft.issue=16&rft.spage=3531&rft.epage=3539&rft.pages=3531-3539&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c5tc04287a&rft_dat=%3Cproquest_cross%3E1808066023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808066023&rft_id=info:pmid/&rfr_iscdi=true