Ruthenium oxide as a thermoelectric material: unconventional thermoelectric properties of Li 2 RuO 3

Ruthenium oxides are typical strongly correlated electron systems, where various ordering phenomena occur through delicate interplay among the charge, spin and orbital degrees of freedom. We propose that the thermoelectric properties can be improved by controlling such ordered phases in strongly cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2015, Vol.3 (40), p.10430-10435
Hauptverfasser: Terasaki, Ichiro, Abe, Shuhei, Yasui, Yukio, Okazaki, Ryuji, Taniguchi, Hiroki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10435
container_issue 40
container_start_page 10430
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 3
creator Terasaki, Ichiro
Abe, Shuhei
Yasui, Yukio
Okazaki, Ryuji
Taniguchi, Hiroki
description Ruthenium oxides are typical strongly correlated electron systems, where various ordering phenomena occur through delicate interplay among the charge, spin and orbital degrees of freedom. We propose that the thermoelectric properties can be improved by controlling such ordered phases in strongly correlated electron systems. Honeycomb Ru oxide Li 2 RuO 3 is a prime example that exhibits a unique phase transition at 540 K with a charge gap. We have found that the ordered state can be modified by substituting the Ru site partially, and succeeded in increasing the thermopower by keeping the resistivity around the same value to enhance the power factor substantially.
doi_str_mv 10.1039/C5TC01619C
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C5TC01619C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C5TC01619C</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76C-1c04bffaffff2a345099bc912decef0b6e01e58aef51ddcab2e1f1842db76b1a3</originalsourceid><addsrcrecordid>eNpdkE1LxDAYhIMouKx78RfkLFTzJk3aepPiFxQWlt5LmrzBSNuUpBX9964oCj6XGYZhDkPIJbBrYKK6qWVbM1BQ1Sdkw5lkWSFFfvrruTonu5Re2ZESVKmqDbGHdXnBya8jDe_eItWJanqM4hhwQLNEb-ioF4xeD7d0nUyY3nBafJj08L83xzBjXDwmGhxtPOX0sO6puCBnTg8Jdz-6Je3DfVs_Zc3-8bm-azJTqDoDw_LeOe2OcC1yyaqqNxVwiwYd6xUyQFlqdBKsNbrnCA7KnNu-UD1osSVX37MmhpQium6OftTxowPWfT3U_T0kPgGUhVse</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ruthenium oxide as a thermoelectric material: unconventional thermoelectric properties of Li 2 RuO 3</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Terasaki, Ichiro ; Abe, Shuhei ; Yasui, Yukio ; Okazaki, Ryuji ; Taniguchi, Hiroki</creator><creatorcontrib>Terasaki, Ichiro ; Abe, Shuhei ; Yasui, Yukio ; Okazaki, Ryuji ; Taniguchi, Hiroki</creatorcontrib><description>Ruthenium oxides are typical strongly correlated electron systems, where various ordering phenomena occur through delicate interplay among the charge, spin and orbital degrees of freedom. We propose that the thermoelectric properties can be improved by controlling such ordered phases in strongly correlated electron systems. Honeycomb Ru oxide Li 2 RuO 3 is a prime example that exhibits a unique phase transition at 540 K with a charge gap. We have found that the ordered state can be modified by substituting the Ru site partially, and succeeded in increasing the thermopower by keeping the resistivity around the same value to enhance the power factor substantially.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/C5TC01619C</identifier><language>eng</language><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2015, Vol.3 (40), p.10430-10435</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76C-1c04bffaffff2a345099bc912decef0b6e01e58aef51ddcab2e1f1842db76b1a3</citedby><cites>FETCH-LOGICAL-c76C-1c04bffaffff2a345099bc912decef0b6e01e58aef51ddcab2e1f1842db76b1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Terasaki, Ichiro</creatorcontrib><creatorcontrib>Abe, Shuhei</creatorcontrib><creatorcontrib>Yasui, Yukio</creatorcontrib><creatorcontrib>Okazaki, Ryuji</creatorcontrib><creatorcontrib>Taniguchi, Hiroki</creatorcontrib><title>Ruthenium oxide as a thermoelectric material: unconventional thermoelectric properties of Li 2 RuO 3</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Ruthenium oxides are typical strongly correlated electron systems, where various ordering phenomena occur through delicate interplay among the charge, spin and orbital degrees of freedom. We propose that the thermoelectric properties can be improved by controlling such ordered phases in strongly correlated electron systems. Honeycomb Ru oxide Li 2 RuO 3 is a prime example that exhibits a unique phase transition at 540 K with a charge gap. We have found that the ordered state can be modified by substituting the Ru site partially, and succeeded in increasing the thermopower by keeping the resistivity around the same value to enhance the power factor substantially.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAYhIMouKx78RfkLFTzJk3aepPiFxQWlt5LmrzBSNuUpBX9964oCj6XGYZhDkPIJbBrYKK6qWVbM1BQ1Sdkw5lkWSFFfvrruTonu5Re2ZESVKmqDbGHdXnBya8jDe_eItWJanqM4hhwQLNEb-ioF4xeD7d0nUyY3nBafJj08L83xzBjXDwmGhxtPOX0sO6puCBnTg8Jdz-6Je3DfVs_Zc3-8bm-azJTqDoDw_LeOe2OcC1yyaqqNxVwiwYd6xUyQFlqdBKsNbrnCA7KnNu-UD1osSVX37MmhpQium6OftTxowPWfT3U_T0kPgGUhVse</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Terasaki, Ichiro</creator><creator>Abe, Shuhei</creator><creator>Yasui, Yukio</creator><creator>Okazaki, Ryuji</creator><creator>Taniguchi, Hiroki</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Ruthenium oxide as a thermoelectric material: unconventional thermoelectric properties of Li 2 RuO 3</title><author>Terasaki, Ichiro ; Abe, Shuhei ; Yasui, Yukio ; Okazaki, Ryuji ; Taniguchi, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76C-1c04bffaffff2a345099bc912decef0b6e01e58aef51ddcab2e1f1842db76b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terasaki, Ichiro</creatorcontrib><creatorcontrib>Abe, Shuhei</creatorcontrib><creatorcontrib>Yasui, Yukio</creatorcontrib><creatorcontrib>Okazaki, Ryuji</creatorcontrib><creatorcontrib>Taniguchi, Hiroki</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terasaki, Ichiro</au><au>Abe, Shuhei</au><au>Yasui, Yukio</au><au>Okazaki, Ryuji</au><au>Taniguchi, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ruthenium oxide as a thermoelectric material: unconventional thermoelectric properties of Li 2 RuO 3</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2015</date><risdate>2015</risdate><volume>3</volume><issue>40</issue><spage>10430</spage><epage>10435</epage><pages>10430-10435</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Ruthenium oxides are typical strongly correlated electron systems, where various ordering phenomena occur through delicate interplay among the charge, spin and orbital degrees of freedom. We propose that the thermoelectric properties can be improved by controlling such ordered phases in strongly correlated electron systems. Honeycomb Ru oxide Li 2 RuO 3 is a prime example that exhibits a unique phase transition at 540 K with a charge gap. We have found that the ordered state can be modified by substituting the Ru site partially, and succeeded in increasing the thermopower by keeping the resistivity around the same value to enhance the power factor substantially.</abstract><doi>10.1039/C5TC01619C</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2015, Vol.3 (40), p.10430-10435
issn 2050-7526
2050-7534
language eng
recordid cdi_crossref_primary_10_1039_C5TC01619C
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Ruthenium oxide as a thermoelectric material: unconventional thermoelectric properties of Li 2 RuO 3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ruthenium%20oxide%20as%20a%20thermoelectric%20material:%20unconventional%20thermoelectric%20properties%20of%20Li%202%20RuO%203&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Terasaki,%20Ichiro&rft.date=2015&rft.volume=3&rft.issue=40&rft.spage=10430&rft.epage=10435&rft.pages=10430-10435&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/C5TC01619C&rft_dat=%3Ccrossref%3E10_1039_C5TC01619C%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true