Mg–Fe–Al–O for advanced CO 2 to CO conversion: carbon monoxide yield vs. oxygen storage capacity

A detailed study of new oxygen carrier materials, Mg–Fe–Al–O, with various loadings of iron oxide (10–100 wt% Fe 2 O 3 ) is carried out in order to investigate the relationship between material transformation, stability and CO yield from CO 2 conversion. In situ XRD during H 2 -TPR, CO 2 -TPO and is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015, Vol.3 (31), p.16251-16262
Hauptverfasser: Dharanipragada, N. V. R. Aditya, Buelens, Lukas C., Poelman, Hilde, De Grave, Eddy, Galvita, Vladimir V., Marin, Guy B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16262
container_issue 31
container_start_page 16251
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 3
creator Dharanipragada, N. V. R. Aditya
Buelens, Lukas C.
Poelman, Hilde
De Grave, Eddy
Galvita, Vladimir V.
Marin, Guy B.
description A detailed study of new oxygen carrier materials, Mg–Fe–Al–O, with various loadings of iron oxide (10–100 wt% Fe 2 O 3 ) is carried out in order to investigate the relationship between material transformation, stability and CO yield from CO 2 conversion. In situ XRD during H 2 -TPR, CO 2 -TPO and isothermal chemical looping cycles as well as Mössbauer spectroscopy are employed. All samples show the formation of a spinel phase, MgFeAlO x . High loadings of iron oxide (50–90 wt%) lead to both spinel and Fe 2 O 3 phases and show deactivation in cycling as a result of Fe 2 O 3 particle sintering. During the reduction, reoxidation and cycling of the spinel MgFeAlO x phase, only limited sintering occurs. This is evidenced by the stable spinel crystallite sizes (∼15–20 nm) during isothermal cycling. The reduction of MgFe 3+ AlO x starts at 400 °C and proceeds via partial reduction to MgFe 2+ AlO x . Prolonged cycling and higher temperatures (>750 °C) lead to deeper reduction and segregation of Fe from the spinel structure. Very high stability and CO yield from CO 2 conversion are found in Mg–Fe–Al–O materials with 10 wt% Fe 2 O 3 , i.e. the lowest oxygen storage capacity among the tested samples. Compared to 10 wt% Fe 2 O 3 supported on Al 2 O 3 or MgO, the CO yield of the 10 wt% Fe 2 O 3 –MgFeAlO x spinel is ten times higher.
doi_str_mv 10.1039/C5TA02289D
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C5TA02289D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C5TA02289D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76D-e2f16ac94961a6225777250a061c5efb27c645f3faf058bfabcc35fb15d85e5a3</originalsourceid><addsrcrecordid>eNpFUMFKxDAUDKLgsu7FL8hZ6JqkmzTxVrruKqz00nt5TZNS6TZLUsr25j_4h36JXRSdw8wchmEYhO4pWVMSq8eMFylhTKrtFVowwkmUbJS4_vNS3qJVCO9khiREKLVA9q35-vjcmZnSbqYcW-cx1CP02tQ4yzHDg7uodv1ofGhd_4Q1-Mr1-Oh6d25rg6fWdDUewxq789SYHofBeWjMHDyBbofpDt1Y6IJZ_eoSFbvnInuJDvn-NUsPkU7ENjLMUgFazaspCMZ4kiSMEyCCam5sxRItNtzGFizhsrJQaR1zW1FeS244xEv08FOrvQvBG1uefHsEP5WUlJePyv-P4m_MYluk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mg–Fe–Al–O for advanced CO 2 to CO conversion: carbon monoxide yield vs. oxygen storage capacity</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Dharanipragada, N. V. R. Aditya ; Buelens, Lukas C. ; Poelman, Hilde ; De Grave, Eddy ; Galvita, Vladimir V. ; Marin, Guy B.</creator><creatorcontrib>Dharanipragada, N. V. R. Aditya ; Buelens, Lukas C. ; Poelman, Hilde ; De Grave, Eddy ; Galvita, Vladimir V. ; Marin, Guy B.</creatorcontrib><description>A detailed study of new oxygen carrier materials, Mg–Fe–Al–O, with various loadings of iron oxide (10–100 wt% Fe 2 O 3 ) is carried out in order to investigate the relationship between material transformation, stability and CO yield from CO 2 conversion. In situ XRD during H 2 -TPR, CO 2 -TPO and isothermal chemical looping cycles as well as Mössbauer spectroscopy are employed. All samples show the formation of a spinel phase, MgFeAlO x . High loadings of iron oxide (50–90 wt%) lead to both spinel and Fe 2 O 3 phases and show deactivation in cycling as a result of Fe 2 O 3 particle sintering. During the reduction, reoxidation and cycling of the spinel MgFeAlO x phase, only limited sintering occurs. This is evidenced by the stable spinel crystallite sizes (∼15–20 nm) during isothermal cycling. The reduction of MgFe 3+ AlO x starts at 400 °C and proceeds via partial reduction to MgFe 2+ AlO x . Prolonged cycling and higher temperatures (&gt;750 °C) lead to deeper reduction and segregation of Fe from the spinel structure. Very high stability and CO yield from CO 2 conversion are found in Mg–Fe–Al–O materials with 10 wt% Fe 2 O 3 , i.e. the lowest oxygen storage capacity among the tested samples. Compared to 10 wt% Fe 2 O 3 supported on Al 2 O 3 or MgO, the CO yield of the 10 wt% Fe 2 O 3 –MgFeAlO x spinel is ten times higher.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C5TA02289D</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2015, Vol.3 (31), p.16251-16262</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76D-e2f16ac94961a6225777250a061c5efb27c645f3faf058bfabcc35fb15d85e5a3</citedby><cites>FETCH-LOGICAL-c76D-e2f16ac94961a6225777250a061c5efb27c645f3faf058bfabcc35fb15d85e5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Dharanipragada, N. V. R. Aditya</creatorcontrib><creatorcontrib>Buelens, Lukas C.</creatorcontrib><creatorcontrib>Poelman, Hilde</creatorcontrib><creatorcontrib>De Grave, Eddy</creatorcontrib><creatorcontrib>Galvita, Vladimir V.</creatorcontrib><creatorcontrib>Marin, Guy B.</creatorcontrib><title>Mg–Fe–Al–O for advanced CO 2 to CO conversion: carbon monoxide yield vs. oxygen storage capacity</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>A detailed study of new oxygen carrier materials, Mg–Fe–Al–O, with various loadings of iron oxide (10–100 wt% Fe 2 O 3 ) is carried out in order to investigate the relationship between material transformation, stability and CO yield from CO 2 conversion. In situ XRD during H 2 -TPR, CO 2 -TPO and isothermal chemical looping cycles as well as Mössbauer spectroscopy are employed. All samples show the formation of a spinel phase, MgFeAlO x . High loadings of iron oxide (50–90 wt%) lead to both spinel and Fe 2 O 3 phases and show deactivation in cycling as a result of Fe 2 O 3 particle sintering. During the reduction, reoxidation and cycling of the spinel MgFeAlO x phase, only limited sintering occurs. This is evidenced by the stable spinel crystallite sizes (∼15–20 nm) during isothermal cycling. The reduction of MgFe 3+ AlO x starts at 400 °C and proceeds via partial reduction to MgFe 2+ AlO x . Prolonged cycling and higher temperatures (&gt;750 °C) lead to deeper reduction and segregation of Fe from the spinel structure. Very high stability and CO yield from CO 2 conversion are found in Mg–Fe–Al–O materials with 10 wt% Fe 2 O 3 , i.e. the lowest oxygen storage capacity among the tested samples. Compared to 10 wt% Fe 2 O 3 supported on Al 2 O 3 or MgO, the CO yield of the 10 wt% Fe 2 O 3 –MgFeAlO x spinel is ten times higher.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFUMFKxDAUDKLgsu7FL8hZ6JqkmzTxVrruKqz00nt5TZNS6TZLUsr25j_4h36JXRSdw8wchmEYhO4pWVMSq8eMFylhTKrtFVowwkmUbJS4_vNS3qJVCO9khiREKLVA9q35-vjcmZnSbqYcW-cx1CP02tQ4yzHDg7uodv1ofGhd_4Q1-Mr1-Oh6d25rg6fWdDUewxq789SYHofBeWjMHDyBbofpDt1Y6IJZ_eoSFbvnInuJDvn-NUsPkU7ENjLMUgFazaspCMZ4kiSMEyCCam5sxRItNtzGFizhsrJQaR1zW1FeS244xEv08FOrvQvBG1uefHsEP5WUlJePyv-P4m_MYluk</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Dharanipragada, N. V. R. Aditya</creator><creator>Buelens, Lukas C.</creator><creator>Poelman, Hilde</creator><creator>De Grave, Eddy</creator><creator>Galvita, Vladimir V.</creator><creator>Marin, Guy B.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2015</creationdate><title>Mg–Fe–Al–O for advanced CO 2 to CO conversion: carbon monoxide yield vs. oxygen storage capacity</title><author>Dharanipragada, N. V. R. Aditya ; Buelens, Lukas C. ; Poelman, Hilde ; De Grave, Eddy ; Galvita, Vladimir V. ; Marin, Guy B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76D-e2f16ac94961a6225777250a061c5efb27c645f3faf058bfabcc35fb15d85e5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dharanipragada, N. V. R. Aditya</creatorcontrib><creatorcontrib>Buelens, Lukas C.</creatorcontrib><creatorcontrib>Poelman, Hilde</creatorcontrib><creatorcontrib>De Grave, Eddy</creatorcontrib><creatorcontrib>Galvita, Vladimir V.</creatorcontrib><creatorcontrib>Marin, Guy B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dharanipragada, N. V. R. Aditya</au><au>Buelens, Lukas C.</au><au>Poelman, Hilde</au><au>De Grave, Eddy</au><au>Galvita, Vladimir V.</au><au>Marin, Guy B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mg–Fe–Al–O for advanced CO 2 to CO conversion: carbon monoxide yield vs. oxygen storage capacity</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2015</date><risdate>2015</risdate><volume>3</volume><issue>31</issue><spage>16251</spage><epage>16262</epage><pages>16251-16262</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>A detailed study of new oxygen carrier materials, Mg–Fe–Al–O, with various loadings of iron oxide (10–100 wt% Fe 2 O 3 ) is carried out in order to investigate the relationship between material transformation, stability and CO yield from CO 2 conversion. In situ XRD during H 2 -TPR, CO 2 -TPO and isothermal chemical looping cycles as well as Mössbauer spectroscopy are employed. All samples show the formation of a spinel phase, MgFeAlO x . High loadings of iron oxide (50–90 wt%) lead to both spinel and Fe 2 O 3 phases and show deactivation in cycling as a result of Fe 2 O 3 particle sintering. During the reduction, reoxidation and cycling of the spinel MgFeAlO x phase, only limited sintering occurs. This is evidenced by the stable spinel crystallite sizes (∼15–20 nm) during isothermal cycling. The reduction of MgFe 3+ AlO x starts at 400 °C and proceeds via partial reduction to MgFe 2+ AlO x . Prolonged cycling and higher temperatures (&gt;750 °C) lead to deeper reduction and segregation of Fe from the spinel structure. Very high stability and CO yield from CO 2 conversion are found in Mg–Fe–Al–O materials with 10 wt% Fe 2 O 3 , i.e. the lowest oxygen storage capacity among the tested samples. Compared to 10 wt% Fe 2 O 3 supported on Al 2 O 3 or MgO, the CO yield of the 10 wt% Fe 2 O 3 –MgFeAlO x spinel is ten times higher.</abstract><doi>10.1039/C5TA02289D</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2015, Vol.3 (31), p.16251-16262
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_C5TA02289D
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Mg–Fe–Al–O for advanced CO 2 to CO conversion: carbon monoxide yield vs. oxygen storage capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mg%E2%80%93Fe%E2%80%93Al%E2%80%93O%20for%20advanced%20CO%202%20to%20CO%20conversion:%20carbon%20monoxide%20yield%20vs.%20oxygen%20storage%20capacity&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Dharanipragada,%20N.%20V.%20R.%20Aditya&rft.date=2015&rft.volume=3&rft.issue=31&rft.spage=16251&rft.epage=16262&rft.pages=16251-16262&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C5TA02289D&rft_dat=%3Ccrossref%3E10_1039_C5TA02289D%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true