Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications
Reduced graphene oxide (rGO) can improve the thermoelectric properties of polyaniline (PANI) by varying its concentration in composites of rGO nanosheets and PANI. The figure of merit ( ZT ) of rGO-PANI composites is increased with an increasing percentage of rGO (up to 50%), which is 7.5 times high...
Gespeichert in:
Veröffentlicht in: | RSC advances 2015-01, Vol.5 (39), p.3139-3148 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reduced graphene oxide (rGO) can improve the thermoelectric properties of polyaniline (PANI) by varying its concentration in composites of rGO nanosheets and PANI. The figure of merit (
ZT
) of rGO-PANI composites is increased with an increasing percentage of rGO (up to 50%), which is 7.5 times higher as compared to pure PANI. High resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analyses show a uniform growth of PANI over the surface of rGO as a template, leading to a more ordered structure with high crystallinity during polymerization. Compared to pure PANI, both the electrical conductivity and thermoelectric power of the rGO-PANI composite is higher due to the increased carrier mobility as confirmed by a Hall effect measurement. Fourier transform infrared spectroscopy (FTIR), ultra-violet visible range spectroscopy (UV-Vis) and Raman spectroscopy analyses reveal that strong π-π interactions assisted the uniform distribution of PANI on the rGO nanosheets. Other strong interactions include electrostatic forces and hydrogen bonding between rGO and PANI, which provide a route for constructing highly ordered chain structures with improved thermoelectric performance of PANI. There is no significant change in the thermal conductivity of the rGO-PANI composite as compared to pure PANI, which improves the thermoelectric performance of composite.
Reduced graphene oxide (rGO) can improve the thermoelectric properties of polyaniline (PANI) by varying its concentration in composites of rGO nanosheets and PANI. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c5ra01794g |