Oligothiophene wires: impact of torsional conformation on the electronic structure

Charge transport in polymer- and oligomer-based semiconductor materials depends strongly on the structural ordering of the constituent molecules. Variations in molecular conformations influence the electronic structures of polymers and oligomers, and thus impact their charge-transport properties. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2016-02, Vol.18 (6), p.4842-4849
Hauptverfasser: Kislitsyn, D. A, Taber, B. N, Gervasi, C. F, Zhang, L, Mannsfeld, S. C. B, Prell, J. S, Briseno, A. L, Nazin, G. V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4849
container_issue 6
container_start_page 4842
container_title Physical chemistry chemical physics : PCCP
container_volume 18
creator Kislitsyn, D. A
Taber, B. N
Gervasi, C. F
Zhang, L
Mannsfeld, S. C. B
Prell, J. S
Briseno, A. L
Nazin, G. V
description Charge transport in polymer- and oligomer-based semiconductor materials depends strongly on the structural ordering of the constituent molecules. Variations in molecular conformations influence the electronic structures of polymers and oligomers, and thus impact their charge-transport properties. In this study, we used Scanning Tunneling Microscopy and Spectroscopy (STM/STS) to investigate the electronic structures of different alkyl-substituted oligothiophenes displaying varied torsional conformations on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes self-assemble into chain-like structures, binding to each other via interdigitated alkyl ligands. The molecules adopted distinct planar conformations with alkyl ligands forming cis - or trans - mutual orientations. For each molecule, by using STS mapping, we identify a progression of particle-in-a-box-like states corresponding to the LUMO, LUMO+1 and LUMO+2 orbitals. Analysis of STS data revealed very similar unoccupied molecular orbital energies for different possible molecular conformations. By using density functional theory calculations, we show that the lack of variation in molecular orbital energies among the different oligothiophene conformers implies that the effect of the Au-oligothiophene interaction on molecular orbital energies is nearly identical for all studied torsional conformations. Our results suggest that cis - trans torsional disorder may not be a significant source of electronic disorder and charge carrier trapping in organic semiconductor devices based on oligothiophenes. Different torsional conformations of alkyl-substituted oligothiophenes show nearly identical progressions of particle-in-a-box-like electronic orbitals.
doi_str_mv 10.1039/c5cp07092a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C5CP07092A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762964189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-9c4da578dd50913afeda25d7f4ef1f86c44522ca9ddf2c81400d5350de47b0ca3</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AgiqurF-9KjyJUk-bRxNtSfMHCiui5ZPNwI21TkxTx21vddT0KgZmQHzPwDwAnCF4iiMWVoqqHJRSF3AEHiDCcC8jJ7rYv2QQcxvgGIUQU4X0wKRiHhJTkADwtGvfq08r5fmU6k324YOJ15tpeqpR5myUfovOdbDLlO-tDK9N4zcaTViYzjVEp-M6pLKYwqDQEcwT2rGyiOd7UKXi5vXmu7vP54u6hms1zRQhJuVBES1pyrSkUCEtrtCyoLi0xFlnORkWLQkmhtS0URwRCTTGF2pByCZXEU3C-ntsH_z6YmOrWRWWaRnbGD7FGHFM2rmL8f1qyQjCCuBjpxZqq4GMMxtZ9cK0MnzWC9XfcdUWrx5-4ZyM-28wdlq3RW_qb7whO1yBEtX39-y_8BYnEhZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762964189</pqid></control><display><type>article</type><title>Oligothiophene wires: impact of torsional conformation on the electronic structure</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kislitsyn, D. A ; Taber, B. N ; Gervasi, C. F ; Zhang, L ; Mannsfeld, S. C. B ; Prell, J. S ; Briseno, A. L ; Nazin, G. V</creator><creatorcontrib>Kislitsyn, D. A ; Taber, B. N ; Gervasi, C. F ; Zhang, L ; Mannsfeld, S. C. B ; Prell, J. S ; Briseno, A. L ; Nazin, G. V</creatorcontrib><description>Charge transport in polymer- and oligomer-based semiconductor materials depends strongly on the structural ordering of the constituent molecules. Variations in molecular conformations influence the electronic structures of polymers and oligomers, and thus impact their charge-transport properties. In this study, we used Scanning Tunneling Microscopy and Spectroscopy (STM/STS) to investigate the electronic structures of different alkyl-substituted oligothiophenes displaying varied torsional conformations on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes self-assemble into chain-like structures, binding to each other via interdigitated alkyl ligands. The molecules adopted distinct planar conformations with alkyl ligands forming cis - or trans - mutual orientations. For each molecule, by using STS mapping, we identify a progression of particle-in-a-box-like states corresponding to the LUMO, LUMO+1 and LUMO+2 orbitals. Analysis of STS data revealed very similar unoccupied molecular orbital energies for different possible molecular conformations. By using density functional theory calculations, we show that the lack of variation in molecular orbital energies among the different oligothiophene conformers implies that the effect of the Au-oligothiophene interaction on molecular orbital energies is nearly identical for all studied torsional conformations. Our results suggest that cis - trans torsional disorder may not be a significant source of electronic disorder and charge carrier trapping in organic semiconductor devices based on oligothiophenes. Different torsional conformations of alkyl-substituted oligothiophenes show nearly identical progressions of particle-in-a-box-like electronic orbitals.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp07092a</identifier><identifier>PMID: 26804474</identifier><language>eng</language><publisher>England</publisher><subject>Disorders ; Electronic structure ; Electronics ; Energy use ; Ligands ; Molecular conformation ; Molecular orbitals ; Scanning tunneling microscopy</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-02, Vol.18 (6), p.4842-4849</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-9c4da578dd50913afeda25d7f4ef1f86c44522ca9ddf2c81400d5350de47b0ca3</citedby><cites>FETCH-LOGICAL-c444t-9c4da578dd50913afeda25d7f4ef1f86c44522ca9ddf2c81400d5350de47b0ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26804474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kislitsyn, D. A</creatorcontrib><creatorcontrib>Taber, B. N</creatorcontrib><creatorcontrib>Gervasi, C. F</creatorcontrib><creatorcontrib>Zhang, L</creatorcontrib><creatorcontrib>Mannsfeld, S. C. B</creatorcontrib><creatorcontrib>Prell, J. S</creatorcontrib><creatorcontrib>Briseno, A. L</creatorcontrib><creatorcontrib>Nazin, G. V</creatorcontrib><title>Oligothiophene wires: impact of torsional conformation on the electronic structure</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Charge transport in polymer- and oligomer-based semiconductor materials depends strongly on the structural ordering of the constituent molecules. Variations in molecular conformations influence the electronic structures of polymers and oligomers, and thus impact their charge-transport properties. In this study, we used Scanning Tunneling Microscopy and Spectroscopy (STM/STS) to investigate the electronic structures of different alkyl-substituted oligothiophenes displaying varied torsional conformations on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes self-assemble into chain-like structures, binding to each other via interdigitated alkyl ligands. The molecules adopted distinct planar conformations with alkyl ligands forming cis - or trans - mutual orientations. For each molecule, by using STS mapping, we identify a progression of particle-in-a-box-like states corresponding to the LUMO, LUMO+1 and LUMO+2 orbitals. Analysis of STS data revealed very similar unoccupied molecular orbital energies for different possible molecular conformations. By using density functional theory calculations, we show that the lack of variation in molecular orbital energies among the different oligothiophene conformers implies that the effect of the Au-oligothiophene interaction on molecular orbital energies is nearly identical for all studied torsional conformations. Our results suggest that cis - trans torsional disorder may not be a significant source of electronic disorder and charge carrier trapping in organic semiconductor devices based on oligothiophenes. Different torsional conformations of alkyl-substituted oligothiophenes show nearly identical progressions of particle-in-a-box-like electronic orbitals.</description><subject>Disorders</subject><subject>Electronic structure</subject><subject>Electronics</subject><subject>Energy use</subject><subject>Ligands</subject><subject>Molecular conformation</subject><subject>Molecular orbitals</subject><subject>Scanning tunneling microscopy</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLxDAQB_AgiqurF-9KjyJUk-bRxNtSfMHCiui5ZPNwI21TkxTx21vddT0KgZmQHzPwDwAnCF4iiMWVoqqHJRSF3AEHiDCcC8jJ7rYv2QQcxvgGIUQU4X0wKRiHhJTkADwtGvfq08r5fmU6k324YOJ15tpeqpR5myUfovOdbDLlO-tDK9N4zcaTViYzjVEp-M6pLKYwqDQEcwT2rGyiOd7UKXi5vXmu7vP54u6hms1zRQhJuVBES1pyrSkUCEtrtCyoLi0xFlnORkWLQkmhtS0URwRCTTGF2pByCZXEU3C-ntsH_z6YmOrWRWWaRnbGD7FGHFM2rmL8f1qyQjCCuBjpxZqq4GMMxtZ9cK0MnzWC9XfcdUWrx5-4ZyM-28wdlq3RW_qb7whO1yBEtX39-y_8BYnEhZY</recordid><startdate>20160214</startdate><enddate>20160214</enddate><creator>Kislitsyn, D. A</creator><creator>Taber, B. N</creator><creator>Gervasi, C. F</creator><creator>Zhang, L</creator><creator>Mannsfeld, S. C. B</creator><creator>Prell, J. S</creator><creator>Briseno, A. L</creator><creator>Nazin, G. V</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160214</creationdate><title>Oligothiophene wires: impact of torsional conformation on the electronic structure</title><author>Kislitsyn, D. A ; Taber, B. N ; Gervasi, C. F ; Zhang, L ; Mannsfeld, S. C. B ; Prell, J. S ; Briseno, A. L ; Nazin, G. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-9c4da578dd50913afeda25d7f4ef1f86c44522ca9ddf2c81400d5350de47b0ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Disorders</topic><topic>Electronic structure</topic><topic>Electronics</topic><topic>Energy use</topic><topic>Ligands</topic><topic>Molecular conformation</topic><topic>Molecular orbitals</topic><topic>Scanning tunneling microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kislitsyn, D. A</creatorcontrib><creatorcontrib>Taber, B. N</creatorcontrib><creatorcontrib>Gervasi, C. F</creatorcontrib><creatorcontrib>Zhang, L</creatorcontrib><creatorcontrib>Mannsfeld, S. C. B</creatorcontrib><creatorcontrib>Prell, J. S</creatorcontrib><creatorcontrib>Briseno, A. L</creatorcontrib><creatorcontrib>Nazin, G. V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kislitsyn, D. A</au><au>Taber, B. N</au><au>Gervasi, C. F</au><au>Zhang, L</au><au>Mannsfeld, S. C. B</au><au>Prell, J. S</au><au>Briseno, A. L</au><au>Nazin, G. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligothiophene wires: impact of torsional conformation on the electronic structure</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-02-14</date><risdate>2016</risdate><volume>18</volume><issue>6</issue><spage>4842</spage><epage>4849</epage><pages>4842-4849</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Charge transport in polymer- and oligomer-based semiconductor materials depends strongly on the structural ordering of the constituent molecules. Variations in molecular conformations influence the electronic structures of polymers and oligomers, and thus impact their charge-transport properties. In this study, we used Scanning Tunneling Microscopy and Spectroscopy (STM/STS) to investigate the electronic structures of different alkyl-substituted oligothiophenes displaying varied torsional conformations on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes self-assemble into chain-like structures, binding to each other via interdigitated alkyl ligands. The molecules adopted distinct planar conformations with alkyl ligands forming cis - or trans - mutual orientations. For each molecule, by using STS mapping, we identify a progression of particle-in-a-box-like states corresponding to the LUMO, LUMO+1 and LUMO+2 orbitals. Analysis of STS data revealed very similar unoccupied molecular orbital energies for different possible molecular conformations. By using density functional theory calculations, we show that the lack of variation in molecular orbital energies among the different oligothiophene conformers implies that the effect of the Au-oligothiophene interaction on molecular orbital energies is nearly identical for all studied torsional conformations. Our results suggest that cis - trans torsional disorder may not be a significant source of electronic disorder and charge carrier trapping in organic semiconductor devices based on oligothiophenes. Different torsional conformations of alkyl-substituted oligothiophenes show nearly identical progressions of particle-in-a-box-like electronic orbitals.</abstract><cop>England</cop><pmid>26804474</pmid><doi>10.1039/c5cp07092a</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2016-02, Vol.18 (6), p.4842-4849
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C5CP07092A
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Disorders
Electronic structure
Electronics
Energy use
Ligands
Molecular conformation
Molecular orbitals
Scanning tunneling microscopy
title Oligothiophene wires: impact of torsional conformation on the electronic structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligothiophene%20wires:%20impact%20of%20torsional%20conformation%20on%20the%20electronic%20structure&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Kislitsyn,%20D.%20A&rft.date=2016-02-14&rft.volume=18&rft.issue=6&rft.spage=4842&rft.epage=4849&rft.pages=4842-4849&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp07092a&rft_dat=%3Cproquest_cross%3E1762964189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762964189&rft_id=info:pmid/26804474&rfr_iscdi=true