A micro-sized bio-solar cell for self-sustaining power generation
Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2015-01, Vol.15 (2), p.391-398 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m
−2
through photosynthetic reactions of cyanobacteria,
Synechocystis
sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.
Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/c4lc01069h |