The critical role of interfacial dynamics in the stability of organic photovoltaic devices

Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-01, Vol.16 (18), p.8294-8300
Hauptverfasser: Grancini, G, De Bastiani, M, Martino, N, Fazzi, D, Egelhaaf, H-J, Sauermann, T, Antognazza, M R, Lanzani, G, Caironi, M, Franco, L, Petrozza, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8300
container_issue 18
container_start_page 8294
container_title Physical chemistry chemical physics : PCCP
container_volume 16
creator Grancini, G
De Bastiani, M
Martino, N
Fazzi, D
Egelhaaf, H-J
Sauermann, T
Antognazza, M R
Lanzani, G
Caironi, M
Franco, L
Petrozza, A
description Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phenyl-C61-butyric acid methyl ester (PCPDTBT:PCBM) low band gap-based photovoltaic blend. We apply quasi steady state Photo-induced Absorption Optical Spectroscopy, time-resolved Electron Spin Resonance Spectroscopy and theoretical modeling to investigate the dynamics of long-lived photoexcited species. The role of the interfacial physics in the efficiency and robustness of the photovoltaic blend is clarified. We demonstrate that the polymer triplet state (T), populated through the interfacial charge transfer (CT) state recombination, coexists with charge carriers. However, in contrast to previous suggestions, it has no role in the degradation process caused by air exposure. Instead, the long-lived emissive interfacial CT state is responsible for the blend degradation in air. It mediates direct electron transfer to contaminants, leading to the formation of reactive and harmful species, such as the superoxide.
doi_str_mv 10.1039/c4cp00801d
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C4CP00801D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24658425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6e15e090335900c4225b7d574892c8c6c45ac529e3a845674500d35b796316b3</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgWgpLPwAlBkpcP5MPKJQPqRKMHRiiZyLQ43SOrJNpf57Ugqd7u7VoxteQq4p3FHg-h4FDgAl0PaETKlQPNdQitPjXqgJuYjxCwCopPycTJhQshRMTsnHcmUzDC45NH0WfG8z32Vuk2zoDLoxa3cbs3YYxzBLI47JNK53abeHPnyajcNsWPnkt75PZjxau3Vo4yU560wf7dXfnJHl03xZveSLt-fX6mGRI9M05cpSaUED51IDoGBMNkUrC1FqhiUqFNKgZNpyUwqpCiEBWj4arThVDZ-R28NbDD7GYLt6CG5twq6mUO_7qStRvf_28zjimwMevpu1bY_0vxD-Azv1X-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The critical role of interfacial dynamics in the stability of organic photovoltaic devices</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Grancini, G ; De Bastiani, M ; Martino, N ; Fazzi, D ; Egelhaaf, H-J ; Sauermann, T ; Antognazza, M R ; Lanzani, G ; Caironi, M ; Franco, L ; Petrozza, A</creator><creatorcontrib>Grancini, G ; De Bastiani, M ; Martino, N ; Fazzi, D ; Egelhaaf, H-J ; Sauermann, T ; Antognazza, M R ; Lanzani, G ; Caironi, M ; Franco, L ; Petrozza, A</creatorcontrib><description>Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phenyl-C61-butyric acid methyl ester (PCPDTBT:PCBM) low band gap-based photovoltaic blend. We apply quasi steady state Photo-induced Absorption Optical Spectroscopy, time-resolved Electron Spin Resonance Spectroscopy and theoretical modeling to investigate the dynamics of long-lived photoexcited species. The role of the interfacial physics in the efficiency and robustness of the photovoltaic blend is clarified. We demonstrate that the polymer triplet state (T), populated through the interfacial charge transfer (CT) state recombination, coexists with charge carriers. However, in contrast to previous suggestions, it has no role in the degradation process caused by air exposure. Instead, the long-lived emissive interfacial CT state is responsible for the blend degradation in air. It mediates direct electron transfer to contaminants, leading to the formation of reactive and harmful species, such as the superoxide.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c4cp00801d</identifier><identifier>PMID: 24658425</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (18), p.8294-8300</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6e15e090335900c4225b7d574892c8c6c45ac529e3a845674500d35b796316b3</citedby><cites>FETCH-LOGICAL-c291t-6e15e090335900c4225b7d574892c8c6c45ac529e3a845674500d35b796316b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24658425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grancini, G</creatorcontrib><creatorcontrib>De Bastiani, M</creatorcontrib><creatorcontrib>Martino, N</creatorcontrib><creatorcontrib>Fazzi, D</creatorcontrib><creatorcontrib>Egelhaaf, H-J</creatorcontrib><creatorcontrib>Sauermann, T</creatorcontrib><creatorcontrib>Antognazza, M R</creatorcontrib><creatorcontrib>Lanzani, G</creatorcontrib><creatorcontrib>Caironi, M</creatorcontrib><creatorcontrib>Franco, L</creatorcontrib><creatorcontrib>Petrozza, A</creatorcontrib><title>The critical role of interfacial dynamics in the stability of organic photovoltaic devices</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phenyl-C61-butyric acid methyl ester (PCPDTBT:PCBM) low band gap-based photovoltaic blend. We apply quasi steady state Photo-induced Absorption Optical Spectroscopy, time-resolved Electron Spin Resonance Spectroscopy and theoretical modeling to investigate the dynamics of long-lived photoexcited species. The role of the interfacial physics in the efficiency and robustness of the photovoltaic blend is clarified. We demonstrate that the polymer triplet state (T), populated through the interfacial charge transfer (CT) state recombination, coexists with charge carriers. However, in contrast to previous suggestions, it has no role in the degradation process caused by air exposure. Instead, the long-lived emissive interfacial CT state is responsible for the blend degradation in air. It mediates direct electron transfer to contaminants, leading to the formation of reactive and harmful species, such as the superoxide.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAQBmALgWgpLPwAlBkpcP5MPKJQPqRKMHRiiZyLQ43SOrJNpf57Ugqd7u7VoxteQq4p3FHg-h4FDgAl0PaETKlQPNdQitPjXqgJuYjxCwCopPycTJhQshRMTsnHcmUzDC45NH0WfG8z32Vuk2zoDLoxa3cbs3YYxzBLI47JNK53abeHPnyajcNsWPnkt75PZjxau3Vo4yU560wf7dXfnJHl03xZveSLt-fX6mGRI9M05cpSaUED51IDoGBMNkUrC1FqhiUqFNKgZNpyUwqpCiEBWj4arThVDZ-R28NbDD7GYLt6CG5twq6mUO_7qStRvf_28zjimwMevpu1bY_0vxD-Azv1X-M</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Grancini, G</creator><creator>De Bastiani, M</creator><creator>Martino, N</creator><creator>Fazzi, D</creator><creator>Egelhaaf, H-J</creator><creator>Sauermann, T</creator><creator>Antognazza, M R</creator><creator>Lanzani, G</creator><creator>Caironi, M</creator><creator>Franco, L</creator><creator>Petrozza, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>The critical role of interfacial dynamics in the stability of organic photovoltaic devices</title><author>Grancini, G ; De Bastiani, M ; Martino, N ; Fazzi, D ; Egelhaaf, H-J ; Sauermann, T ; Antognazza, M R ; Lanzani, G ; Caironi, M ; Franco, L ; Petrozza, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6e15e090335900c4225b7d574892c8c6c45ac529e3a845674500d35b796316b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grancini, G</creatorcontrib><creatorcontrib>De Bastiani, M</creatorcontrib><creatorcontrib>Martino, N</creatorcontrib><creatorcontrib>Fazzi, D</creatorcontrib><creatorcontrib>Egelhaaf, H-J</creatorcontrib><creatorcontrib>Sauermann, T</creatorcontrib><creatorcontrib>Antognazza, M R</creatorcontrib><creatorcontrib>Lanzani, G</creatorcontrib><creatorcontrib>Caironi, M</creatorcontrib><creatorcontrib>Franco, L</creatorcontrib><creatorcontrib>Petrozza, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grancini, G</au><au>De Bastiani, M</au><au>Martino, N</au><au>Fazzi, D</au><au>Egelhaaf, H-J</au><au>Sauermann, T</au><au>Antognazza, M R</au><au>Lanzani, G</au><au>Caironi, M</au><au>Franco, L</au><au>Petrozza, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The critical role of interfacial dynamics in the stability of organic photovoltaic devices</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>16</volume><issue>18</issue><spage>8294</spage><epage>8300</epage><pages>8294-8300</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phenyl-C61-butyric acid methyl ester (PCPDTBT:PCBM) low band gap-based photovoltaic blend. We apply quasi steady state Photo-induced Absorption Optical Spectroscopy, time-resolved Electron Spin Resonance Spectroscopy and theoretical modeling to investigate the dynamics of long-lived photoexcited species. The role of the interfacial physics in the efficiency and robustness of the photovoltaic blend is clarified. We demonstrate that the polymer triplet state (T), populated through the interfacial charge transfer (CT) state recombination, coexists with charge carriers. However, in contrast to previous suggestions, it has no role in the degradation process caused by air exposure. Instead, the long-lived emissive interfacial CT state is responsible for the blend degradation in air. It mediates direct electron transfer to contaminants, leading to the formation of reactive and harmful species, such as the superoxide.</abstract><cop>England</cop><pmid>24658425</pmid><doi>10.1039/c4cp00801d</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (18), p.8294-8300
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C4CP00801D
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title The critical role of interfacial dynamics in the stability of organic photovoltaic devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20critical%20role%20of%20interfacial%20dynamics%20in%20the%20stability%20of%20organic%20photovoltaic%20devices&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Grancini,%20G&rft.date=2014-01-01&rft.volume=16&rft.issue=18&rft.spage=8294&rft.epage=8300&rft.pages=8294-8300&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c4cp00801d&rft_dat=%3Cpubmed_cross%3E24658425%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24658425&rfr_iscdi=true