The critical role of interfacial dynamics in the stability of organic photovoltaic devices
Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phe...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2014-01, Vol.16 (18), p.8294-8300 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8300 |
---|---|
container_issue | 18 |
container_start_page | 8294 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 16 |
creator | Grancini, G De Bastiani, M Martino, N Fazzi, D Egelhaaf, H-J Sauermann, T Antognazza, M R Lanzani, G Caironi, M Franco, L Petrozza, A |
description | Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phenyl-C61-butyric acid methyl ester (PCPDTBT:PCBM) low band gap-based photovoltaic blend. We apply quasi steady state Photo-induced Absorption Optical Spectroscopy, time-resolved Electron Spin Resonance Spectroscopy and theoretical modeling to investigate the dynamics of long-lived photoexcited species. The role of the interfacial physics in the efficiency and robustness of the photovoltaic blend is clarified. We demonstrate that the polymer triplet state (T), populated through the interfacial charge transfer (CT) state recombination, coexists with charge carriers. However, in contrast to previous suggestions, it has no role in the degradation process caused by air exposure. Instead, the long-lived emissive interfacial CT state is responsible for the blend degradation in air. It mediates direct electron transfer to contaminants, leading to the formation of reactive and harmful species, such as the superoxide. |
doi_str_mv | 10.1039/c4cp00801d |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C4CP00801D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24658425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6e15e090335900c4225b7d574892c8c6c45ac529e3a845674500d35b796316b3</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgWgpLPwAlBkpcP5MPKJQPqRKMHRiiZyLQ43SOrJNpf57Ugqd7u7VoxteQq4p3FHg-h4FDgAl0PaETKlQPNdQitPjXqgJuYjxCwCopPycTJhQshRMTsnHcmUzDC45NH0WfG8z32Vuk2zoDLoxa3cbs3YYxzBLI47JNK53abeHPnyajcNsWPnkt75PZjxau3Vo4yU560wf7dXfnJHl03xZveSLt-fX6mGRI9M05cpSaUED51IDoGBMNkUrC1FqhiUqFNKgZNpyUwqpCiEBWj4arThVDZ-R28NbDD7GYLt6CG5twq6mUO_7qStRvf_28zjimwMevpu1bY_0vxD-Azv1X-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The critical role of interfacial dynamics in the stability of organic photovoltaic devices</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Grancini, G ; De Bastiani, M ; Martino, N ; Fazzi, D ; Egelhaaf, H-J ; Sauermann, T ; Antognazza, M R ; Lanzani, G ; Caironi, M ; Franco, L ; Petrozza, A</creator><creatorcontrib>Grancini, G ; De Bastiani, M ; Martino, N ; Fazzi, D ; Egelhaaf, H-J ; Sauermann, T ; Antognazza, M R ; Lanzani, G ; Caironi, M ; Franco, L ; Petrozza, A</creatorcontrib><description>Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phenyl-C61-butyric acid methyl ester (PCPDTBT:PCBM) low band gap-based photovoltaic blend. We apply quasi steady state Photo-induced Absorption Optical Spectroscopy, time-resolved Electron Spin Resonance Spectroscopy and theoretical modeling to investigate the dynamics of long-lived photoexcited species. The role of the interfacial physics in the efficiency and robustness of the photovoltaic blend is clarified. We demonstrate that the polymer triplet state (T), populated through the interfacial charge transfer (CT) state recombination, coexists with charge carriers. However, in contrast to previous suggestions, it has no role in the degradation process caused by air exposure. Instead, the long-lived emissive interfacial CT state is responsible for the blend degradation in air. It mediates direct electron transfer to contaminants, leading to the formation of reactive and harmful species, such as the superoxide.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c4cp00801d</identifier><identifier>PMID: 24658425</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (18), p.8294-8300</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6e15e090335900c4225b7d574892c8c6c45ac529e3a845674500d35b796316b3</citedby><cites>FETCH-LOGICAL-c291t-6e15e090335900c4225b7d574892c8c6c45ac529e3a845674500d35b796316b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24658425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grancini, G</creatorcontrib><creatorcontrib>De Bastiani, M</creatorcontrib><creatorcontrib>Martino, N</creatorcontrib><creatorcontrib>Fazzi, D</creatorcontrib><creatorcontrib>Egelhaaf, H-J</creatorcontrib><creatorcontrib>Sauermann, T</creatorcontrib><creatorcontrib>Antognazza, M R</creatorcontrib><creatorcontrib>Lanzani, G</creatorcontrib><creatorcontrib>Caironi, M</creatorcontrib><creatorcontrib>Franco, L</creatorcontrib><creatorcontrib>Petrozza, A</creatorcontrib><title>The critical role of interfacial dynamics in the stability of organic photovoltaic devices</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phenyl-C61-butyric acid methyl ester (PCPDTBT:PCBM) low band gap-based photovoltaic blend. We apply quasi steady state Photo-induced Absorption Optical Spectroscopy, time-resolved Electron Spin Resonance Spectroscopy and theoretical modeling to investigate the dynamics of long-lived photoexcited species. The role of the interfacial physics in the efficiency and robustness of the photovoltaic blend is clarified. We demonstrate that the polymer triplet state (T), populated through the interfacial charge transfer (CT) state recombination, coexists with charge carriers. However, in contrast to previous suggestions, it has no role in the degradation process caused by air exposure. Instead, the long-lived emissive interfacial CT state is responsible for the blend degradation in air. It mediates direct electron transfer to contaminants, leading to the formation of reactive and harmful species, such as the superoxide.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAQBmALgWgpLPwAlBkpcP5MPKJQPqRKMHRiiZyLQ43SOrJNpf57Ugqd7u7VoxteQq4p3FHg-h4FDgAl0PaETKlQPNdQitPjXqgJuYjxCwCopPycTJhQshRMTsnHcmUzDC45NH0WfG8z32Vuk2zoDLoxa3cbs3YYxzBLI47JNK53abeHPnyajcNsWPnkt75PZjxau3Vo4yU560wf7dXfnJHl03xZveSLt-fX6mGRI9M05cpSaUED51IDoGBMNkUrC1FqhiUqFNKgZNpyUwqpCiEBWj4arThVDZ-R28NbDD7GYLt6CG5twq6mUO_7qStRvf_28zjimwMevpu1bY_0vxD-Azv1X-M</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Grancini, G</creator><creator>De Bastiani, M</creator><creator>Martino, N</creator><creator>Fazzi, D</creator><creator>Egelhaaf, H-J</creator><creator>Sauermann, T</creator><creator>Antognazza, M R</creator><creator>Lanzani, G</creator><creator>Caironi, M</creator><creator>Franco, L</creator><creator>Petrozza, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>The critical role of interfacial dynamics in the stability of organic photovoltaic devices</title><author>Grancini, G ; De Bastiani, M ; Martino, N ; Fazzi, D ; Egelhaaf, H-J ; Sauermann, T ; Antognazza, M R ; Lanzani, G ; Caironi, M ; Franco, L ; Petrozza, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6e15e090335900c4225b7d574892c8c6c45ac529e3a845674500d35b796316b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grancini, G</creatorcontrib><creatorcontrib>De Bastiani, M</creatorcontrib><creatorcontrib>Martino, N</creatorcontrib><creatorcontrib>Fazzi, D</creatorcontrib><creatorcontrib>Egelhaaf, H-J</creatorcontrib><creatorcontrib>Sauermann, T</creatorcontrib><creatorcontrib>Antognazza, M R</creatorcontrib><creatorcontrib>Lanzani, G</creatorcontrib><creatorcontrib>Caironi, M</creatorcontrib><creatorcontrib>Franco, L</creatorcontrib><creatorcontrib>Petrozza, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grancini, G</au><au>De Bastiani, M</au><au>Martino, N</au><au>Fazzi, D</au><au>Egelhaaf, H-J</au><au>Sauermann, T</au><au>Antognazza, M R</au><au>Lanzani, G</au><au>Caironi, M</au><au>Franco, L</au><au>Petrozza, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The critical role of interfacial dynamics in the stability of organic photovoltaic devices</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>16</volume><issue>18</issue><spage>8294</spage><epage>8300</epage><pages>8294-8300</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Understanding the stability and degradation mechanisms of organic solar materials is required to achieve long device lifetimes. Here we study photodegradation mechanisms of the (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]):[6,6]-phenyl-C61-butyric acid methyl ester (PCPDTBT:PCBM) low band gap-based photovoltaic blend. We apply quasi steady state Photo-induced Absorption Optical Spectroscopy, time-resolved Electron Spin Resonance Spectroscopy and theoretical modeling to investigate the dynamics of long-lived photoexcited species. The role of the interfacial physics in the efficiency and robustness of the photovoltaic blend is clarified. We demonstrate that the polymer triplet state (T), populated through the interfacial charge transfer (CT) state recombination, coexists with charge carriers. However, in contrast to previous suggestions, it has no role in the degradation process caused by air exposure. Instead, the long-lived emissive interfacial CT state is responsible for the blend degradation in air. It mediates direct electron transfer to contaminants, leading to the formation of reactive and harmful species, such as the superoxide.</abstract><cop>England</cop><pmid>24658425</pmid><doi>10.1039/c4cp00801d</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (18), p.8294-8300 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C4CP00801D |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | The critical role of interfacial dynamics in the stability of organic photovoltaic devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20critical%20role%20of%20interfacial%20dynamics%20in%20the%20stability%20of%20organic%20photovoltaic%20devices&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Grancini,%20G&rft.date=2014-01-01&rft.volume=16&rft.issue=18&rft.spage=8294&rft.epage=8300&rft.pages=8294-8300&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c4cp00801d&rft_dat=%3Cpubmed_cross%3E24658425%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24658425&rfr_iscdi=true |