Melting of palladium clusters-Canonical and microcanonical Monte Carlo simulation

We present Monte Carlo simulations of single palladium clusters of 13, 34, 54, 55, 147 and 309 atoms. The clusters are modeled by a many-body potential and they have been simulated at constant temperature or constant total energy. The caloric curves of the clusters, with the exception of Pd34, exhib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys.Chem.Chem.Phys(PCCP) 2003-01, Vol.5 (1), p.136-150
Hauptverfasser: WESTERGREN, Jan, NORDHOLM, Sture, ROSEN, Arne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 1
container_start_page 136
container_title Phys.Chem.Chem.Phys(PCCP)
container_volume 5
creator WESTERGREN, Jan
NORDHOLM, Sture
ROSEN, Arne
description We present Monte Carlo simulations of single palladium clusters of 13, 34, 54, 55, 147 and 309 atoms. The clusters are modeled by a many-body potential and they have been simulated at constant temperature or constant total energy. The caloric curves of the clusters, with the exception of Pd34, exhibit an S-bend at melting which is typical for a finite system. We have also observed the typical coexistence region of solid and molten clusters both in the canonical and the microcanonical ensembles. Pd34, in contrast, melts without an accompanying peak in heat capacity and at melting the atoms become mobile without any significant change in geometric structure. For the larger clusters a free energy barrier inhibits phase switching. In some cases of phase change from molten to solid structure the barrier is of purely entropic character. By a conversion of the results in the microcanonical simulations into temperature-dependent data, the simulations at fixed temperature and fixed total energy have been compared. The agreement is in most cases good. The results are furthermore compared to earlier molecular dynamics simulations with the Nosé–Hoover thermostat. These results are in good agreement with the Monte Carlo simulations as well.
doi_str_mv 10.1039/b208653k
format Article
fullrecord <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_B208653K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_gup_ub_gu_se_69007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-94dc8d0eb8451c77a62eec2b6f9ecf4f962ca424c18c078dbe511fee6170f0b83</originalsourceid><addsrcrecordid>eNpFkE1LxDAYhIMouH6APyEXwYPVpEnT5KjFL9xFBD2HNE2WaJqUpEX891Yq62lehucdmAHgDKMrjIi4bkvEWUU-98AKU0YKgTjd3901OwRHOX8ghHCFyQq8bowfXdjCaOGgvFedm3qo_ZRHk3LRqBCD08pDFTrYO52i3lmbGEYDG5V8hNn1k1eji-EEHFjlszn902Pwfn_31jwW65eHp-ZmXWiCy7EQtNO8Q6bltMK6rhUrjdFly6ww2lIrWKkVLanGXKOad62pMLbGMFwji1pOjsHlkpu_zDC1ckiuV-lbRuXkdhrkbG0nmY1kAqF6xi8WfK6QczJ294CR_F1O3i7LPc_o-YIOKs89bVJBu_zPU4FnkJEfDf5veA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Melting of palladium clusters-Canonical and microcanonical Monte Carlo simulation</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>WESTERGREN, Jan ; NORDHOLM, Sture ; ROSEN, Arne</creator><creatorcontrib>WESTERGREN, Jan ; NORDHOLM, Sture ; ROSEN, Arne</creatorcontrib><description>We present Monte Carlo simulations of single palladium clusters of 13, 34, 54, 55, 147 and 309 atoms. The clusters are modeled by a many-body potential and they have been simulated at constant temperature or constant total energy. The caloric curves of the clusters, with the exception of Pd34, exhibit an S-bend at melting which is typical for a finite system. We have also observed the typical coexistence region of solid and molten clusters both in the canonical and the microcanonical ensembles. Pd34, in contrast, melts without an accompanying peak in heat capacity and at melting the atoms become mobile without any significant change in geometric structure. For the larger clusters a free energy barrier inhibits phase switching. In some cases of phase change from molten to solid structure the barrier is of purely entropic character. By a conversion of the results in the microcanonical simulations into temperature-dependent data, the simulations at fixed temperature and fixed total energy have been compared. The agreement is in most cases good. The results are furthermore compared to earlier molecular dynamics simulations with the Nosé–Hoover thermostat. These results are in good agreement with the Monte Carlo simulations as well.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/b208653k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical Sciences ; Condensed matter: structure, mechanical and thermal properties ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Kemi ; Physics ; Solid-liquid transitions ; Specific phase transitions</subject><ispartof>Phys.Chem.Chem.Phys(PCCP), 2003-01, Vol.5 (1), p.136-150</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-94dc8d0eb8451c77a62eec2b6f9ecf4f962ca424c18c078dbe511fee6170f0b83</citedby><cites>FETCH-LOGICAL-c312t-94dc8d0eb8451c77a62eec2b6f9ecf4f962ca424c18c078dbe511fee6170f0b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2831,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14918656$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/69007$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>WESTERGREN, Jan</creatorcontrib><creatorcontrib>NORDHOLM, Sture</creatorcontrib><creatorcontrib>ROSEN, Arne</creatorcontrib><title>Melting of palladium clusters-Canonical and microcanonical Monte Carlo simulation</title><title>Phys.Chem.Chem.Phys(PCCP)</title><description>We present Monte Carlo simulations of single palladium clusters of 13, 34, 54, 55, 147 and 309 atoms. The clusters are modeled by a many-body potential and they have been simulated at constant temperature or constant total energy. The caloric curves of the clusters, with the exception of Pd34, exhibit an S-bend at melting which is typical for a finite system. We have also observed the typical coexistence region of solid and molten clusters both in the canonical and the microcanonical ensembles. Pd34, in contrast, melts without an accompanying peak in heat capacity and at melting the atoms become mobile without any significant change in geometric structure. For the larger clusters a free energy barrier inhibits phase switching. In some cases of phase change from molten to solid structure the barrier is of purely entropic character. By a conversion of the results in the microcanonical simulations into temperature-dependent data, the simulations at fixed temperature and fixed total energy have been compared. The agreement is in most cases good. The results are furthermore compared to earlier molecular dynamics simulations with the Nosé–Hoover thermostat. These results are in good agreement with the Monte Carlo simulations as well.</description><subject>Chemical Sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Kemi</subject><subject>Physics</subject><subject>Solid-liquid transitions</subject><subject>Specific phase transitions</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAYhIMouH6APyEXwYPVpEnT5KjFL9xFBD2HNE2WaJqUpEX891Yq62lehucdmAHgDKMrjIi4bkvEWUU-98AKU0YKgTjd3901OwRHOX8ghHCFyQq8bowfXdjCaOGgvFedm3qo_ZRHk3LRqBCD08pDFTrYO52i3lmbGEYDG5V8hNn1k1eji-EEHFjlszn902Pwfn_31jwW65eHp-ZmXWiCy7EQtNO8Q6bltMK6rhUrjdFly6ww2lIrWKkVLanGXKOad62pMLbGMFwji1pOjsHlkpu_zDC1ckiuV-lbRuXkdhrkbG0nmY1kAqF6xi8WfK6QczJ294CR_F1O3i7LPc_o-YIOKs89bVJBu_zPU4FnkJEfDf5veA</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>WESTERGREN, Jan</creator><creator>NORDHOLM, Sture</creator><creator>ROSEN, Arne</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope></search><sort><creationdate>20030101</creationdate><title>Melting of palladium clusters-Canonical and microcanonical Monte Carlo simulation</title><author>WESTERGREN, Jan ; NORDHOLM, Sture ; ROSEN, Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-94dc8d0eb8451c77a62eec2b6f9ecf4f962ca424c18c078dbe511fee6170f0b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Chemical Sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Kemi</topic><topic>Physics</topic><topic>Solid-liquid transitions</topic><topic>Specific phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WESTERGREN, Jan</creatorcontrib><creatorcontrib>NORDHOLM, Sture</creatorcontrib><creatorcontrib>ROSEN, Arne</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Phys.Chem.Chem.Phys(PCCP)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WESTERGREN, Jan</au><au>NORDHOLM, Sture</au><au>ROSEN, Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting of palladium clusters-Canonical and microcanonical Monte Carlo simulation</atitle><jtitle>Phys.Chem.Chem.Phys(PCCP)</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>5</volume><issue>1</issue><spage>136</spage><epage>150</epage><pages>136-150</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We present Monte Carlo simulations of single palladium clusters of 13, 34, 54, 55, 147 and 309 atoms. The clusters are modeled by a many-body potential and they have been simulated at constant temperature or constant total energy. The caloric curves of the clusters, with the exception of Pd34, exhibit an S-bend at melting which is typical for a finite system. We have also observed the typical coexistence region of solid and molten clusters both in the canonical and the microcanonical ensembles. Pd34, in contrast, melts without an accompanying peak in heat capacity and at melting the atoms become mobile without any significant change in geometric structure. For the larger clusters a free energy barrier inhibits phase switching. In some cases of phase change from molten to solid structure the barrier is of purely entropic character. By a conversion of the results in the microcanonical simulations into temperature-dependent data, the simulations at fixed temperature and fixed total energy have been compared. The agreement is in most cases good. The results are furthermore compared to earlier molecular dynamics simulations with the Nosé–Hoover thermostat. These results are in good agreement with the Monte Carlo simulations as well.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/b208653k</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Phys.Chem.Chem.Phys(PCCP), 2003-01, Vol.5 (1), p.136-150
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_B208653K
source Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Chemical Sciences
Condensed matter: structure, mechanical and thermal properties
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Kemi
Physics
Solid-liquid transitions
Specific phase transitions
title Melting of palladium clusters-Canonical and microcanonical Monte Carlo simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20of%20palladium%20clusters-Canonical%20and%20microcanonical%20Monte%20Carlo%20simulation&rft.jtitle=Phys.Chem.Chem.Phys(PCCP)&rft.au=WESTERGREN,%20Jan&rft.date=2003-01-01&rft.volume=5&rft.issue=1&rft.spage=136&rft.epage=150&rft.pages=136-150&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/b208653k&rft_dat=%3Cswepub_cross%3Eoai_gup_ub_gu_se_69007%3C/swepub_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true