Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films

Perovskite manganites exhibit fascinating transport and magnetic properties, essential for fundamental research and applications. With the development of thin film technologies, more exotic properties have been observed in doped-manganites over a wide range of temperature. Unraveling the interplay o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia materials 2015-07, Vol.7 (7), p.e196-e196
Hauptverfasser: Yin, Xinmao, Majidi, Muhammad Aziz, Chi, Xiao, Ren, Peng, You, Lu, Palina, Natalia, Yu, Xiaojiang, Diao, Caozheng, Schmidt, Daniel, Wang, Baomin, Yang, Ping, Breese, Mark B H, Wang, Junling, Rusydi, Andrivo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e196
container_issue 7
container_start_page e196
container_title NPG Asia materials
container_volume 7
creator Yin, Xinmao
Majidi, Muhammad Aziz
Chi, Xiao
Ren, Peng
You, Lu
Palina, Natalia
Yu, Xiaojiang
Diao, Caozheng
Schmidt, Daniel
Wang, Baomin
Yang, Ping
Breese, Mark B H
Wang, Junling
Rusydi, Andrivo
description Perovskite manganites exhibit fascinating transport and magnetic properties, essential for fundamental research and applications. With the development of thin film technologies, more exotic properties have been observed in doped-manganites over a wide range of temperature. Unraveling the interplay of spin, charge and orbital degrees of freedom that drives exotic, macroscopic properties is therefore crucial for the understanding of strongly correlated electron systems. Here, using a combination of transport, spectroscopic ellipsometry, X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we observe two concomitant electronic and magnetic phases (insulating paramagnetic phase for T >195 K and insulating canted-ferromagnetic for T
doi_str_mv 10.1038/am.2015.65
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1038_am_2015_65</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1038_am_2015_65</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-8c2bf37ec65d9c7b1022f2773db9ffbc747f056f2505a8bfa32b83b7ba8824783</originalsourceid><addsrcrecordid>eNptkM1KAzEYRYMoWGo3PkHWytQkk79ZSvEPCm7sekgySTtlJhmSjOLbm1Jx5er74BwulwvALUZrjGr5oMY1QZitObsACywlrShi4vLvp801WKV0RAhhzqlkdAGOOx_Vpx16v4eH8AXtYE2OwfcGKt_BNPUephxnk-doEzTBFzrAUZkYkglT8aYYJhtzX3Bwhfi98n22cB5yVFU-lATXD2O6AVdODcmufu8S7J6fPjav1fb95W3zuK1MzZtcSUO0q4U1nHWNERojQhwRou5045w2ggqHGHeEIaakdqomWtZaaCUloULWS3B3zj1VTNG6dor9qOJ3i1F7GqpVY3saquWsyPdnORXJ721sj2GOvvT7z_4BbXRshg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Yin, Xinmao ; Majidi, Muhammad Aziz ; Chi, Xiao ; Ren, Peng ; You, Lu ; Palina, Natalia ; Yu, Xiaojiang ; Diao, Caozheng ; Schmidt, Daniel ; Wang, Baomin ; Yang, Ping ; Breese, Mark B H ; Wang, Junling ; Rusydi, Andrivo</creator><creatorcontrib>Yin, Xinmao ; Majidi, Muhammad Aziz ; Chi, Xiao ; Ren, Peng ; You, Lu ; Palina, Natalia ; Yu, Xiaojiang ; Diao, Caozheng ; Schmidt, Daniel ; Wang, Baomin ; Yang, Ping ; Breese, Mark B H ; Wang, Junling ; Rusydi, Andrivo</creatorcontrib><description>Perovskite manganites exhibit fascinating transport and magnetic properties, essential for fundamental research and applications. With the development of thin film technologies, more exotic properties have been observed in doped-manganites over a wide range of temperature. Unraveling the interplay of spin, charge and orbital degrees of freedom that drives exotic, macroscopic properties is therefore crucial for the understanding of strongly correlated electron systems. Here, using a combination of transport, spectroscopic ellipsometry, X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we observe two concomitant electronic and magnetic phases (insulating paramagnetic phase for T &gt;195 K and insulating canted-ferromagnetic for T &lt;140 K) with an intermediate metal-like state in ultra-thin La 0.7 Sr 0.3 MnO 3 (LSMO) film on DyScO 3 substrate. Surprisingly, the O2 p -Mn3 d hybridization strength reduces with decreasing temperature, driving the system more insulating and ferromagnetic. The Jahn–Teller effect weakens markedly within the intermediate temperature range, making the system more metal-like. We also apply this comprehensive method to a LSMO film on SrTiO 3 substrate for comparison. Our study reveals that the interplay of the O2 p -Mn3 d hybridization and the dynamic Jahn–Teller splitting controls the macroscopic transport and magnetic properties in ultra-thin manganites. Manganite thin films: electronic and spin structures govern properties The interplay between hybridization, orbital occupancy and spin governs the transport and magnetic properties of ultrathin manganites. This finding was made by scientists in Singapore, China and Indonesia based on a new analysis of a doped manganite ultrathin film. Thin films of doped perovskite manganites exhibit exotic properties, but it is unclear what roles the spin, charge and orbital degrees of freedom of these strongly correlated electron systems play in generating such properties. Andrivo Rusydi, Junling Wang and collaborators observed an insulating, ferromagnetic phase below 140 kelvin, an insulating, paramagnetic phase above 195 kelvin, and a metal-like state at intermediate temperatures in their film. They found that the O2 p –Mn3 d hybridization strength drops with temperature, making the system more insulating and ferromagnetic, whereas the Jahn-Teller effect decreases dramatically in the intermediate temperature range, making the system more metal-like. The interplay between hybridization, orbital occupancy and spin that governs the macroscopic transport and magnetic properties of ultra-thin manganites is revealed using a combination of spectroscopic ellipsometry, X-ray absorption, X-ray magnetic circular dichroism and transport measurements.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/am.2015.65</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/122 ; 140/146 ; 639/766/119 ; Biomaterials ; Chemistry and Materials Science ; Energy Systems ; Materials Science ; Optical and Electronic Materials ; original-article ; Structural Materials ; Surface and Interface Science ; Thin Films</subject><ispartof>NPG Asia materials, 2015-07, Vol.7 (7), p.e196-e196</ispartof><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-8c2bf37ec65d9c7b1022f2773db9ffbc747f056f2505a8bfa32b83b7ba8824783</citedby><cites>FETCH-LOGICAL-c369t-8c2bf37ec65d9c7b1022f2773db9ffbc747f056f2505a8bfa32b83b7ba8824783</cites><orcidid>0000-0002-8246-4444 ; 0000-0003-3663-7081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/am.2015.65$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/am.2015.65$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Yin, Xinmao</creatorcontrib><creatorcontrib>Majidi, Muhammad Aziz</creatorcontrib><creatorcontrib>Chi, Xiao</creatorcontrib><creatorcontrib>Ren, Peng</creatorcontrib><creatorcontrib>You, Lu</creatorcontrib><creatorcontrib>Palina, Natalia</creatorcontrib><creatorcontrib>Yu, Xiaojiang</creatorcontrib><creatorcontrib>Diao, Caozheng</creatorcontrib><creatorcontrib>Schmidt, Daniel</creatorcontrib><creatorcontrib>Wang, Baomin</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Breese, Mark B H</creatorcontrib><creatorcontrib>Wang, Junling</creatorcontrib><creatorcontrib>Rusydi, Andrivo</creatorcontrib><title>Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>Perovskite manganites exhibit fascinating transport and magnetic properties, essential for fundamental research and applications. With the development of thin film technologies, more exotic properties have been observed in doped-manganites over a wide range of temperature. Unraveling the interplay of spin, charge and orbital degrees of freedom that drives exotic, macroscopic properties is therefore crucial for the understanding of strongly correlated electron systems. Here, using a combination of transport, spectroscopic ellipsometry, X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we observe two concomitant electronic and magnetic phases (insulating paramagnetic phase for T &gt;195 K and insulating canted-ferromagnetic for T &lt;140 K) with an intermediate metal-like state in ultra-thin La 0.7 Sr 0.3 MnO 3 (LSMO) film on DyScO 3 substrate. Surprisingly, the O2 p -Mn3 d hybridization strength reduces with decreasing temperature, driving the system more insulating and ferromagnetic. The Jahn–Teller effect weakens markedly within the intermediate temperature range, making the system more metal-like. We also apply this comprehensive method to a LSMO film on SrTiO 3 substrate for comparison. Our study reveals that the interplay of the O2 p -Mn3 d hybridization and the dynamic Jahn–Teller splitting controls the macroscopic transport and magnetic properties in ultra-thin manganites. Manganite thin films: electronic and spin structures govern properties The interplay between hybridization, orbital occupancy and spin governs the transport and magnetic properties of ultrathin manganites. This finding was made by scientists in Singapore, China and Indonesia based on a new analysis of a doped manganite ultrathin film. Thin films of doped perovskite manganites exhibit exotic properties, but it is unclear what roles the spin, charge and orbital degrees of freedom of these strongly correlated electron systems play in generating such properties. Andrivo Rusydi, Junling Wang and collaborators observed an insulating, ferromagnetic phase below 140 kelvin, an insulating, paramagnetic phase above 195 kelvin, and a metal-like state at intermediate temperatures in their film. They found that the O2 p –Mn3 d hybridization strength drops with temperature, making the system more insulating and ferromagnetic, whereas the Jahn-Teller effect decreases dramatically in the intermediate temperature range, making the system more metal-like. The interplay between hybridization, orbital occupancy and spin that governs the macroscopic transport and magnetic properties of ultra-thin manganites is revealed using a combination of spectroscopic ellipsometry, X-ray absorption, X-ray magnetic circular dichroism and transport measurements.</description><subject>132/122</subject><subject>140/146</subject><subject>639/766/119</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Energy Systems</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>original-article</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thin Films</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNptkM1KAzEYRYMoWGo3PkHWytQkk79ZSvEPCm7sekgySTtlJhmSjOLbm1Jx5er74BwulwvALUZrjGr5oMY1QZitObsACywlrShi4vLvp801WKV0RAhhzqlkdAGOOx_Vpx16v4eH8AXtYE2OwfcGKt_BNPUephxnk-doEzTBFzrAUZkYkglT8aYYJhtzX3Bwhfi98n22cB5yVFU-lATXD2O6AVdODcmufu8S7J6fPjav1fb95W3zuK1MzZtcSUO0q4U1nHWNERojQhwRou5045w2ggqHGHeEIaakdqomWtZaaCUloULWS3B3zj1VTNG6dor9qOJ3i1F7GqpVY3saquWsyPdnORXJ721sj2GOvvT7z_4BbXRshg</recordid><startdate>20150703</startdate><enddate>20150703</enddate><creator>Yin, Xinmao</creator><creator>Majidi, Muhammad Aziz</creator><creator>Chi, Xiao</creator><creator>Ren, Peng</creator><creator>You, Lu</creator><creator>Palina, Natalia</creator><creator>Yu, Xiaojiang</creator><creator>Diao, Caozheng</creator><creator>Schmidt, Daniel</creator><creator>Wang, Baomin</creator><creator>Yang, Ping</creator><creator>Breese, Mark B H</creator><creator>Wang, Junling</creator><creator>Rusydi, Andrivo</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8246-4444</orcidid><orcidid>https://orcid.org/0000-0003-3663-7081</orcidid></search><sort><creationdate>20150703</creationdate><title>Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films</title><author>Yin, Xinmao ; Majidi, Muhammad Aziz ; Chi, Xiao ; Ren, Peng ; You, Lu ; Palina, Natalia ; Yu, Xiaojiang ; Diao, Caozheng ; Schmidt, Daniel ; Wang, Baomin ; Yang, Ping ; Breese, Mark B H ; Wang, Junling ; Rusydi, Andrivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-8c2bf37ec65d9c7b1022f2773db9ffbc747f056f2505a8bfa32b83b7ba8824783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>132/122</topic><topic>140/146</topic><topic>639/766/119</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Energy Systems</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>original-article</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xinmao</creatorcontrib><creatorcontrib>Majidi, Muhammad Aziz</creatorcontrib><creatorcontrib>Chi, Xiao</creatorcontrib><creatorcontrib>Ren, Peng</creatorcontrib><creatorcontrib>You, Lu</creatorcontrib><creatorcontrib>Palina, Natalia</creatorcontrib><creatorcontrib>Yu, Xiaojiang</creatorcontrib><creatorcontrib>Diao, Caozheng</creatorcontrib><creatorcontrib>Schmidt, Daniel</creatorcontrib><creatorcontrib>Wang, Baomin</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Breese, Mark B H</creatorcontrib><creatorcontrib>Wang, Junling</creatorcontrib><creatorcontrib>Rusydi, Andrivo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xinmao</au><au>Majidi, Muhammad Aziz</au><au>Chi, Xiao</au><au>Ren, Peng</au><au>You, Lu</au><au>Palina, Natalia</au><au>Yu, Xiaojiang</au><au>Diao, Caozheng</au><au>Schmidt, Daniel</au><au>Wang, Baomin</au><au>Yang, Ping</au><au>Breese, Mark B H</au><au>Wang, Junling</au><au>Rusydi, Andrivo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2015-07-03</date><risdate>2015</risdate><volume>7</volume><issue>7</issue><spage>e196</spage><epage>e196</epage><pages>e196-e196</pages><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>Perovskite manganites exhibit fascinating transport and magnetic properties, essential for fundamental research and applications. With the development of thin film technologies, more exotic properties have been observed in doped-manganites over a wide range of temperature. Unraveling the interplay of spin, charge and orbital degrees of freedom that drives exotic, macroscopic properties is therefore crucial for the understanding of strongly correlated electron systems. Here, using a combination of transport, spectroscopic ellipsometry, X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we observe two concomitant electronic and magnetic phases (insulating paramagnetic phase for T &gt;195 K and insulating canted-ferromagnetic for T &lt;140 K) with an intermediate metal-like state in ultra-thin La 0.7 Sr 0.3 MnO 3 (LSMO) film on DyScO 3 substrate. Surprisingly, the O2 p -Mn3 d hybridization strength reduces with decreasing temperature, driving the system more insulating and ferromagnetic. The Jahn–Teller effect weakens markedly within the intermediate temperature range, making the system more metal-like. We also apply this comprehensive method to a LSMO film on SrTiO 3 substrate for comparison. Our study reveals that the interplay of the O2 p -Mn3 d hybridization and the dynamic Jahn–Teller splitting controls the macroscopic transport and magnetic properties in ultra-thin manganites. Manganite thin films: electronic and spin structures govern properties The interplay between hybridization, orbital occupancy and spin governs the transport and magnetic properties of ultrathin manganites. This finding was made by scientists in Singapore, China and Indonesia based on a new analysis of a doped manganite ultrathin film. Thin films of doped perovskite manganites exhibit exotic properties, but it is unclear what roles the spin, charge and orbital degrees of freedom of these strongly correlated electron systems play in generating such properties. Andrivo Rusydi, Junling Wang and collaborators observed an insulating, ferromagnetic phase below 140 kelvin, an insulating, paramagnetic phase above 195 kelvin, and a metal-like state at intermediate temperatures in their film. They found that the O2 p –Mn3 d hybridization strength drops with temperature, making the system more insulating and ferromagnetic, whereas the Jahn-Teller effect decreases dramatically in the intermediate temperature range, making the system more metal-like. The interplay between hybridization, orbital occupancy and spin that governs the macroscopic transport and magnetic properties of ultra-thin manganites is revealed using a combination of spectroscopic ellipsometry, X-ray absorption, X-ray magnetic circular dichroism and transport measurements.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/am.2015.65</doi><orcidid>https://orcid.org/0000-0002-8246-4444</orcidid><orcidid>https://orcid.org/0000-0003-3663-7081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia materials, 2015-07, Vol.7 (7), p.e196-e196
issn 1884-4049
1884-4057
language eng
recordid cdi_crossref_primary_10_1038_am_2015_65
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 132/122
140/146
639/766/119
Biomaterials
Chemistry and Materials Science
Energy Systems
Materials Science
Optical and Electronic Materials
original-article
Structural Materials
Surface and Interface Science
Thin Films
title Unraveling how electronic and spin structures control macroscopic properties of manganite ultra-thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20how%20electronic%20and%20spin%20structures%20control%20macroscopic%20properties%20of%20manganite%20ultra-thin%20films&rft.jtitle=NPG%20Asia%20materials&rft.au=Yin,%20Xinmao&rft.date=2015-07-03&rft.volume=7&rft.issue=7&rft.spage=e196&rft.epage=e196&rft.pages=e196-e196&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/am.2015.65&rft_dat=%3Ccrossref_sprin%3E10_1038_am_2015_65%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true