Non-enzymatic Formation of Nitrogen Gas
SINCE comprehensive treatment of the biochemical reduction of nitrate of Gayon and Dupetit 1 it has been generally assumed in denitrification studies that nitric oxide, and particularly nitrogen gas, evolved either from cell preparations or soil systems under moderate conditions of acidity ( p H 5.0...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1966-06, Vol.210 (5041), p.1150-1151 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1151 |
---|---|
container_issue | 5041 |
container_start_page | 1150 |
container_title | Nature (London) |
container_volume | 210 |
creator | WULLSTEIN, L. H GILMOUR, C. M |
description | SINCE comprehensive treatment of the biochemical reduction of nitrate of Gayon and Dupetit
1
it has been generally assumed in denitrification studies that nitric oxide, and particularly nitrogen gas, evolved either from cell preparations or soil systems under moderate conditions of acidity (
p
H 5.0–7.0) and temperature (28°-30° C), are dissimilatory products of ‘nitrate or nitrite respiration’
2–4
. Recent evidence has shown, however, that nitric oxide can also be formed from nitrite in sterile, moderately acid systems when certain transition-like metals are present
5
. Subsequent experiments to be presented in this communication further indicate that nitrogen gas can be formed as a result of reacting potassium nitrite and ferrous sulphate. |
doi_str_mv | 10.1038/2101150a0 |
format | Article |
fullrecord | <record><control><sourceid>nature_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1038_2101150a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101150a0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e6494c5dd7e43e2f4c23002ab6aad9de8a6f3d25119dbbd6f8e2137138ebc96c3</originalsourceid><addsrcrecordid>eNptz7FOwzAQBmALgUQpDDwB2RBIBp_tOM6IKlqQqrLAHDn2uUpFbWSnQ3l6UgWVhelu-PTf_YRcA3sAJvQjBwZQMsNOyARkpahUujolE8a4pkwLdU4uct4wxkqo5ITcrmKgGL73W9N3tpjHdFhiKKIvVl2f4hpDsTD5kpx585nx6ndOycf8-X32Qpdvi9fZ05JarlVPUcla2tK5CqVA7qXlYjhtWmWMqx1qo7xwvASoXds65TVyEBUIja2tlRVTcjfm2hRzTuibr9RtTdo3wJpDw-bYcLD3o82DCWtMzSbuUhje-xffjDiYfpfwGPsnfgAYBVnN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-enzymatic Formation of Nitrogen Gas</title><source>Nature</source><source>SpringerNature Journals</source><creator>WULLSTEIN, L. H ; GILMOUR, C. M</creator><creatorcontrib>WULLSTEIN, L. H ; GILMOUR, C. M</creatorcontrib><description>SINCE comprehensive treatment of the biochemical reduction of nitrate of Gayon and Dupetit
1
it has been generally assumed in denitrification studies that nitric oxide, and particularly nitrogen gas, evolved either from cell preparations or soil systems under moderate conditions of acidity (
p
H 5.0–7.0) and temperature (28°-30° C), are dissimilatory products of ‘nitrate or nitrite respiration’
2–4
. Recent evidence has shown, however, that nitric oxide can also be formed from nitrite in sterile, moderately acid systems when certain transition-like metals are present
5
. Subsequent experiments to be presented in this communication further indicate that nitrogen gas can be formed as a result of reacting potassium nitrite and ferrous sulphate.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/2101150a0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Humanities and Social Sciences ; letter ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 1966-06, Vol.210 (5041), p.1150-1151</ispartof><rights>Springer Nature Limited 1966</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-e6494c5dd7e43e2f4c23002ab6aad9de8a6f3d25119dbbd6f8e2137138ebc96c3</citedby><cites>FETCH-LOGICAL-c286t-e6494c5dd7e43e2f4c23002ab6aad9de8a6f3d25119dbbd6f8e2137138ebc96c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/2101150a0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/2101150a0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>WULLSTEIN, L. H</creatorcontrib><creatorcontrib>GILMOUR, C. M</creatorcontrib><title>Non-enzymatic Formation of Nitrogen Gas</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>SINCE comprehensive treatment of the biochemical reduction of nitrate of Gayon and Dupetit
1
it has been generally assumed in denitrification studies that nitric oxide, and particularly nitrogen gas, evolved either from cell preparations or soil systems under moderate conditions of acidity (
p
H 5.0–7.0) and temperature (28°-30° C), are dissimilatory products of ‘nitrate or nitrite respiration’
2–4
. Recent evidence has shown, however, that nitric oxide can also be formed from nitrite in sterile, moderately acid systems when certain transition-like metals are present
5
. Subsequent experiments to be presented in this communication further indicate that nitrogen gas can be formed as a result of reacting potassium nitrite and ferrous sulphate.</description><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1966</creationdate><recordtype>article</recordtype><recordid>eNptz7FOwzAQBmALgUQpDDwB2RBIBp_tOM6IKlqQqrLAHDn2uUpFbWSnQ3l6UgWVhelu-PTf_YRcA3sAJvQjBwZQMsNOyARkpahUujolE8a4pkwLdU4uct4wxkqo5ITcrmKgGL73W9N3tpjHdFhiKKIvVl2f4hpDsTD5kpx585nx6ndOycf8-X32Qpdvi9fZ05JarlVPUcla2tK5CqVA7qXlYjhtWmWMqx1qo7xwvASoXds65TVyEBUIja2tlRVTcjfm2hRzTuibr9RtTdo3wJpDw-bYcLD3o82DCWtMzSbuUhje-xffjDiYfpfwGPsnfgAYBVnN</recordid><startdate>19660611</startdate><enddate>19660611</enddate><creator>WULLSTEIN, L. H</creator><creator>GILMOUR, C. M</creator><general>Nature Publishing Group UK</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19660611</creationdate><title>Non-enzymatic Formation of Nitrogen Gas</title><author>WULLSTEIN, L. H ; GILMOUR, C. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e6494c5dd7e43e2f4c23002ab6aad9de8a6f3d25119dbbd6f8e2137138ebc96c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1966</creationdate><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WULLSTEIN, L. H</creatorcontrib><creatorcontrib>GILMOUR, C. M</creatorcontrib><collection>CrossRef</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WULLSTEIN, L. H</au><au>GILMOUR, C. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-enzymatic Formation of Nitrogen Gas</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1966-06-11</date><risdate>1966</risdate><volume>210</volume><issue>5041</issue><spage>1150</spage><epage>1151</epage><pages>1150-1151</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>SINCE comprehensive treatment of the biochemical reduction of nitrate of Gayon and Dupetit
1
it has been generally assumed in denitrification studies that nitric oxide, and particularly nitrogen gas, evolved either from cell preparations or soil systems under moderate conditions of acidity (
p
H 5.0–7.0) and temperature (28°-30° C), are dissimilatory products of ‘nitrate or nitrite respiration’
2–4
. Recent evidence has shown, however, that nitric oxide can also be formed from nitrite in sterile, moderately acid systems when certain transition-like metals are present
5
. Subsequent experiments to be presented in this communication further indicate that nitrogen gas can be formed as a result of reacting potassium nitrite and ferrous sulphate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/2101150a0</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1966-06, Vol.210 (5041), p.1150-1151 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_crossref_primary_10_1038_2101150a0 |
source | Nature; SpringerNature Journals |
subjects | Humanities and Social Sciences letter multidisciplinary Science Science (multidisciplinary) |
title | Non-enzymatic Formation of Nitrogen Gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nature_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-enzymatic%20Formation%20of%20Nitrogen%20Gas&rft.jtitle=Nature%20(London)&rft.au=WULLSTEIN,%20L.%20H&rft.date=1966-06-11&rft.volume=210&rft.issue=5041&rft.spage=1150&rft.epage=1151&rft.pages=1150-1151&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/2101150a0&rft_dat=%3Cnature_cross%3E2101150a0%3C/nature_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |