Testing of Two Samples
VARIOUS methods, parametric and non-parametric, are used for examining the significance of the difference between two given samples. The most common of these is the parametric one, the t -test 1 , which is based on the assumption that the samples are drawn from a normal population. There is Pitman...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1953-09, Vol.172 (4377), p.553-553 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 4377 |
container_start_page | 553 |
container_title | Nature (London) |
container_volume | 172 |
creator | KRISHNA IYER, P. V |
description | VARIOUS methods, parametric and non-parametric, are used for examining the significance of the difference between two given samples. The most common of these is the parametric one, the
t
-test
1
, which is based on the assumption that the samples are drawn from a normal population. There is Pitman's
2
w
-test which has been built up by considering all the possible samples that can be drawn by pooling together the two samples. Besides these, Wald and Wolfowitz
3
have used the run theory for deciding the significance of the difference between two samples. This method has been extended for
k
samples by myself
4
. Recently, tests have been constructed by Wallis
5
, Kruskall
6
and Rijkoort
7
by using rank numbers for each of the samples. |
doi_str_mv | 10.1038/172553a0 |
format | Article |
fullrecord | <record><control><sourceid>nature_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1038_172553a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>172553a0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1940-1453f074637cf8def2dacd05241f7d058f31528e1b54896c50c143705e22429b3</originalsourceid><addsrcrecordid>eNptz0tLAzEUBeAgCo5VcOVSZqmL0XuTm8cspfiCggvHdUgzSWlpZ0rSIv57R8bixtXZfBzOYewS4Q5BmHvUXErh4IgVSFpVpIw-ZgUANxUYoU7ZWc4rAJCoqWBXTci7Zbco-1g2n3357jbbdcjn7CS6dQ4XvzlhH0-PzfSlmr09v04fZpXHmqBCkiKCJiW0j6YNkbfOtyA5YdRDmihQchNwLsnUykvwSEKDDJwTr-diwm7GXp_6nFOIdpuWG5e-LIL9-WMPfwZ6O9I8kG4Rkl31-9QN6_6z16Pt3G6fwl_pAXwDnhRQxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Testing of Two Samples</title><source>Nature</source><source>SpringerNature Journals</source><creator>KRISHNA IYER, P. V</creator><creatorcontrib>KRISHNA IYER, P. V</creatorcontrib><description>VARIOUS methods, parametric and non-parametric, are used for examining the significance of the difference between two given samples. The most common of these is the parametric one, the
t
-test
1
, which is based on the assumption that the samples are drawn from a normal population. There is Pitman's
2
w
-test which has been built up by considering all the possible samples that can be drawn by pooling together the two samples. Besides these, Wald and Wolfowitz
3
have used the run theory for deciding the significance of the difference between two samples. This method has been extended for
k
samples by myself
4
. Recently, tests have been constructed by Wallis
5
, Kruskall
6
and Rijkoort
7
by using rank numbers for each of the samples.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/172553a0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Humanities and Social Sciences ; letter ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 1953-09, Vol.172 (4377), p.553-553</ispartof><rights>Springer Nature Limited 1953</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1940-1453f074637cf8def2dacd05241f7d058f31528e1b54896c50c143705e22429b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/172553a0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/172553a0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>KRISHNA IYER, P. V</creatorcontrib><title>Testing of Two Samples</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>VARIOUS methods, parametric and non-parametric, are used for examining the significance of the difference between two given samples. The most common of these is the parametric one, the
t
-test
1
, which is based on the assumption that the samples are drawn from a normal population. There is Pitman's
2
w
-test which has been built up by considering all the possible samples that can be drawn by pooling together the two samples. Besides these, Wald and Wolfowitz
3
have used the run theory for deciding the significance of the difference between two samples. This method has been extended for
k
samples by myself
4
. Recently, tests have been constructed by Wallis
5
, Kruskall
6
and Rijkoort
7
by using rank numbers for each of the samples.</description><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1953</creationdate><recordtype>article</recordtype><recordid>eNptz0tLAzEUBeAgCo5VcOVSZqmL0XuTm8cspfiCggvHdUgzSWlpZ0rSIv57R8bixtXZfBzOYewS4Q5BmHvUXErh4IgVSFpVpIw-ZgUANxUYoU7ZWc4rAJCoqWBXTci7Zbco-1g2n3357jbbdcjn7CS6dQ4XvzlhH0-PzfSlmr09v04fZpXHmqBCkiKCJiW0j6YNkbfOtyA5YdRDmihQchNwLsnUykvwSEKDDJwTr-diwm7GXp_6nFOIdpuWG5e-LIL9-WMPfwZ6O9I8kG4Rkl31-9QN6_6z16Pt3G6fwl_pAXwDnhRQxA</recordid><startdate>19530919</startdate><enddate>19530919</enddate><creator>KRISHNA IYER, P. V</creator><general>Nature Publishing Group UK</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19530919</creationdate><title>Testing of Two Samples</title><author>KRISHNA IYER, P. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1940-1453f074637cf8def2dacd05241f7d058f31528e1b54896c50c143705e22429b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1953</creationdate><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KRISHNA IYER, P. V</creatorcontrib><collection>CrossRef</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KRISHNA IYER, P. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing of Two Samples</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1953-09-19</date><risdate>1953</risdate><volume>172</volume><issue>4377</issue><spage>553</spage><epage>553</epage><pages>553-553</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>VARIOUS methods, parametric and non-parametric, are used for examining the significance of the difference between two given samples. The most common of these is the parametric one, the
t
-test
1
, which is based on the assumption that the samples are drawn from a normal population. There is Pitman's
2
w
-test which has been built up by considering all the possible samples that can be drawn by pooling together the two samples. Besides these, Wald and Wolfowitz
3
have used the run theory for deciding the significance of the difference between two samples. This method has been extended for
k
samples by myself
4
. Recently, tests have been constructed by Wallis
5
, Kruskall
6
and Rijkoort
7
by using rank numbers for each of the samples.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/172553a0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1953-09, Vol.172 (4377), p.553-553 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_crossref_primary_10_1038_172553a0 |
source | Nature; SpringerNature Journals |
subjects | Humanities and Social Sciences letter multidisciplinary Science Science (multidisciplinary) |
title | Testing of Two Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nature_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20of%20Two%20Samples&rft.jtitle=Nature%20(London)&rft.au=KRISHNA%20IYER,%20P.%20V&rft.date=1953-09-19&rft.volume=172&rft.issue=4377&rft.spage=553&rft.epage=553&rft.pages=553-553&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/172553a0&rft_dat=%3Cnature_cross%3E172553a0%3C/nature_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |