A two-dimensional model of sulfur species and aerosols

A two‐dimensional model of sulfate aerosols has been developed. The model includes the sulfate precursor species H2S, CS2, DMS, OCS, and SO2. Microphysical processes simulated are homogeneous nucleation, condensation and evaporation, coagulation, and sedimentation. Tropospheric aerosols are removed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 1997-06, Vol.102 (D11), p.13019-13035
Hauptverfasser: Weisenstein, Debra K., Yue, Glenn K., Ko, Malcolm K. W., Sze, Nien‐Dak, Rodriguez, Jose M., Scott, Courtney J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A two‐dimensional model of sulfate aerosols has been developed. The model includes the sulfate precursor species H2S, CS2, DMS, OCS, and SO2. Microphysical processes simulated are homogeneous nucleation, condensation and evaporation, coagulation, and sedimentation. Tropospheric aerosols are removed by washout processes and by surface deposition. We assume that all aerosols are strictly binary water‐sulfuric acid solutions without solid cores. The main source of condensation nuclei for the stratosphere is new particle formation by homogeneous nucleation in the upper tropical troposphere. A signficant finding is that the stratospheric aerosol mass may be strongly influenced by deep convection in the troposphere. This process, which could transport gas‐phase sulfate precursors into the upper troposphere and lead to elevated levels of SO2 there, could potentially double the stratospheric aerosol mass relative to that due to OCS photooxidation alone. Our model is successful at reproducing the magnitude of stratospheric aerosol loading following the Mount Pinatubo eruption, but the calculated rate of decay of aerosols from the stratosphere is faster than that derived from observations.
ISSN:0148-0227
2156-2202
DOI:10.1029/97JD00901