Radar Characterization of Salt Layers in Europa's Ice Shell as a Window Into Critical Ice‐Ocean Exchange Processes

The potential habitability of Jupiter's moon Europa has motivated two missions: NASA's Europa Clipper and ESA's JUpiter ICy moons Explorer (JUICE). Both missions are equipped with ice‐penetrating radars which will transmit radio waves into the subsurface, recording reflections from in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2025-01, Vol.52 (1), p.n/a
Hauptverfasser: Wolfenbarger, N. S., Blankenship, D. D., Young, D. A., Scanlan, K. M., Chivers, C. J., Findlay, D., Steinbrügge, G. B., Chan, K., Grima, C., Soderlund, K. M., Schroeder, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Geophysical research letters
container_volume 52
creator Wolfenbarger, N. S.
Blankenship, D. D.
Young, D. A.
Scanlan, K. M.
Chivers, C. J.
Findlay, D.
Steinbrügge, G. B.
Chan, K.
Grima, C.
Soderlund, K. M.
Schroeder, D. M.
description The potential habitability of Jupiter's moon Europa has motivated two missions: NASA's Europa Clipper and ESA's JUpiter ICy moons Explorer (JUICE). Both missions are equipped with ice‐penetrating radars which will transmit radio waves into the subsurface, recording reflections from interfaces defined by contrasts in ice shell dielectric properties. Assuming an MgSO4 ocean, we show that salt layers, formed through the freezing of subsurface liquid water reservoirs, can be detected by ice‐penetrating radar instruments on Europa Clipper and JUICE. Furthermore, because these features are thermodynamically stable within the minimally attenuating portion of Europa's ice shell, referred to here as the “pellucid region,” they could produce brighter reflections than deeper liquid water interfaces. We demonstrate how ice‐penetrating radar measurements of salt layer thickness could establish lower bounds on the parameter space of possible initial reservoir thickness and salinity, constrain the origin of reservoirs (ice shell melt vs. ocean injection), and—if sourced through ocean injection—the ocean salinity. Plain Language Summary Europa, one of Jupiter's moons, is thought to have the conditions necessary to support life as we know it. Europa is going to be explored by two missions: NASA's Europa Clipper and ESA's JUpiter ICy moons Explorer (JUICE). Both missions will use radar to look beneath the icy surface to search for liquid water and structures formed from liquid water freezing. In this work we show that salt layers, mixtures of salt and ice formed when salty water freezes into a solid, can be seen by radars on Europa Clipper and JUICE. These layers could give us clues about the water's original size and saltiness, and how these underground reservoirs formed—either from melting ice or ocean water pushing up into the ice shell. This research could help us understand more about Europa's ocean and its potential for life. Key Points Salt layers formed through the process of cryoconcentration represent radar‐detectable structure in Europa's ice shell Ice‐penetrating radar measurements of salt layer thickness can help to determine if ice shell reservoirs are sourced through injection of ocean water The salinity of Europa's ocean can be bounded through combined constraints on maximum initial reservoir thickness and salt layer thickness
doi_str_mv 10.1029/2024GL109144
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2024GL109144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_28349ea8cd074d57a949dec2a74bc8da</doaj_id><sourcerecordid>3153693911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-8433d7a34e7e4b44ff21039404c3f90d72d223d640b4a258ad19d5258e2e327c3</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhlcIJELhxgNY4sCFlLE9Wa-PKGpDpJWKWhBHa2LPNo6WdbA3KuHEI_CMPEm3BCFOnObX6Jt_fumvqpcSziUo-1aBwlUrwUrER9VMWsR5A2AeVzMAO2ll6qfVs1J2AKBBy1k1XlOgLJZbyuRHzvE7jTENInXihvpRtHTkXEQcxMUhpz29LmLtWdxsue8FFUHicxxCuhPrYUximeMYPfUPzK8fP68803T4zW9puGXxISfPpXB5Xj3pqC_84s88qz5dXnxcvp-3V6v18l0798oaNW9Q62BIIxvGDWLXKQnaIqDXnYVgVFBKhxphg6QWDQVpw2ISrFgr4_VZtT75hkQ7t8_xC-WjSxTd70XKt47yFLhnpxqNlqnxAQyGhSGLNrBXZHDjm0CT16uT1z6nrwcuo9ulQx6m-E7Lha6ttlJO1JsT5XMqJXP396sE99CR-7ejCVcn_C72fPwv61bXbd3UVul7y42RaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153693911</pqid></control><display><type>article</type><title>Radar Characterization of Salt Layers in Europa's Ice Shell as a Window Into Critical Ice‐Ocean Exchange Processes</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wolfenbarger, N. S. ; Blankenship, D. D. ; Young, D. A. ; Scanlan, K. M. ; Chivers, C. J. ; Findlay, D. ; Steinbrügge, G. B. ; Chan, K. ; Grima, C. ; Soderlund, K. M. ; Schroeder, D. M.</creator><creatorcontrib>Wolfenbarger, N. S. ; Blankenship, D. D. ; Young, D. A. ; Scanlan, K. M. ; Chivers, C. J. ; Findlay, D. ; Steinbrügge, G. B. ; Chan, K. ; Grima, C. ; Soderlund, K. M. ; Schroeder, D. M.</creatorcontrib><description>The potential habitability of Jupiter's moon Europa has motivated two missions: NASA's Europa Clipper and ESA's JUpiter ICy moons Explorer (JUICE). Both missions are equipped with ice‐penetrating radars which will transmit radio waves into the subsurface, recording reflections from interfaces defined by contrasts in ice shell dielectric properties. Assuming an MgSO4 ocean, we show that salt layers, formed through the freezing of subsurface liquid water reservoirs, can be detected by ice‐penetrating radar instruments on Europa Clipper and JUICE. Furthermore, because these features are thermodynamically stable within the minimally attenuating portion of Europa's ice shell, referred to here as the “pellucid region,” they could produce brighter reflections than deeper liquid water interfaces. We demonstrate how ice‐penetrating radar measurements of salt layer thickness could establish lower bounds on the parameter space of possible initial reservoir thickness and salinity, constrain the origin of reservoirs (ice shell melt vs. ocean injection), and—if sourced through ocean injection—the ocean salinity. Plain Language Summary Europa, one of Jupiter's moons, is thought to have the conditions necessary to support life as we know it. Europa is going to be explored by two missions: NASA's Europa Clipper and ESA's JUpiter ICy moons Explorer (JUICE). Both missions will use radar to look beneath the icy surface to search for liquid water and structures formed from liquid water freezing. In this work we show that salt layers, mixtures of salt and ice formed when salty water freezes into a solid, can be seen by radars on Europa Clipper and JUICE. These layers could give us clues about the water's original size and saltiness, and how these underground reservoirs formed—either from melting ice or ocean water pushing up into the ice shell. This research could help us understand more about Europa's ocean and its potential for life. Key Points Salt layers formed through the process of cryoconcentration represent radar‐detectable structure in Europa's ice shell Ice‐penetrating radar measurements of salt layer thickness can help to determine if ice shell reservoirs are sourced through injection of ocean water The salinity of Europa's ocean can be bounded through combined constraints on maximum initial reservoir thickness and salt layer thickness</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2024GL109144</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Dielectric properties ; Electrical properties ; Europa ; Freezing ; Habitability ; Ice ; Ice cover ; Ice formation ; ice shell ; ice‐penetrating radar ; Icy satellites ; Injection ; Interfaces ; Juices ; Jupiter ; Jupiter probes ; Jupiter satellites ; Lower bounds ; Moon ; Oceans ; Radar ; Radar measurement ; Radio waves ; REASON ; Reservoirs ; RIME ; Salinity ; Salinity effects ; salt layer ; Saltiness ; Salts ; Seawater ; Space missions ; Thickness measurement ; Underground structures ; Water ; Water reservoirs</subject><ispartof>Geophysical research letters, 2025-01, Vol.52 (1), p.n/a</ispartof><rights>2024. The Author(s).</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2972-8433d7a34e7e4b44ff21039404c3f90d72d223d640b4a258ad19d5258e2e327c3</cites><orcidid>0000-0002-6483-0092 ; 0000-0003-0205-4830 ; 0000-0002-1050-7759 ; 0000-0002-9242-8180 ; 0000-0001-7990-3891 ; 0000-0002-7901-3239 ; 0000-0003-1916-3929 ; 0000-0002-6866-8176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2024GL109144$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2024GL109144$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,2096,11493,11541,27901,27902,45550,45551,46027,46443,46451,46867</link.rule.ids></links><search><creatorcontrib>Wolfenbarger, N. S.</creatorcontrib><creatorcontrib>Blankenship, D. D.</creatorcontrib><creatorcontrib>Young, D. A.</creatorcontrib><creatorcontrib>Scanlan, K. M.</creatorcontrib><creatorcontrib>Chivers, C. J.</creatorcontrib><creatorcontrib>Findlay, D.</creatorcontrib><creatorcontrib>Steinbrügge, G. B.</creatorcontrib><creatorcontrib>Chan, K.</creatorcontrib><creatorcontrib>Grima, C.</creatorcontrib><creatorcontrib>Soderlund, K. M.</creatorcontrib><creatorcontrib>Schroeder, D. M.</creatorcontrib><title>Radar Characterization of Salt Layers in Europa's Ice Shell as a Window Into Critical Ice‐Ocean Exchange Processes</title><title>Geophysical research letters</title><description>The potential habitability of Jupiter's moon Europa has motivated two missions: NASA's Europa Clipper and ESA's JUpiter ICy moons Explorer (JUICE). Both missions are equipped with ice‐penetrating radars which will transmit radio waves into the subsurface, recording reflections from interfaces defined by contrasts in ice shell dielectric properties. Assuming an MgSO4 ocean, we show that salt layers, formed through the freezing of subsurface liquid water reservoirs, can be detected by ice‐penetrating radar instruments on Europa Clipper and JUICE. Furthermore, because these features are thermodynamically stable within the minimally attenuating portion of Europa's ice shell, referred to here as the “pellucid region,” they could produce brighter reflections than deeper liquid water interfaces. We demonstrate how ice‐penetrating radar measurements of salt layer thickness could establish lower bounds on the parameter space of possible initial reservoir thickness and salinity, constrain the origin of reservoirs (ice shell melt vs. ocean injection), and—if sourced through ocean injection—the ocean salinity. Plain Language Summary Europa, one of Jupiter's moons, is thought to have the conditions necessary to support life as we know it. Europa is going to be explored by two missions: NASA's Europa Clipper and ESA's JUpiter ICy moons Explorer (JUICE). Both missions will use radar to look beneath the icy surface to search for liquid water and structures formed from liquid water freezing. In this work we show that salt layers, mixtures of salt and ice formed when salty water freezes into a solid, can be seen by radars on Europa Clipper and JUICE. These layers could give us clues about the water's original size and saltiness, and how these underground reservoirs formed—either from melting ice or ocean water pushing up into the ice shell. This research could help us understand more about Europa's ocean and its potential for life. Key Points Salt layers formed through the process of cryoconcentration represent radar‐detectable structure in Europa's ice shell Ice‐penetrating radar measurements of salt layer thickness can help to determine if ice shell reservoirs are sourced through injection of ocean water The salinity of Europa's ocean can be bounded through combined constraints on maximum initial reservoir thickness and salt layer thickness</description><subject>Dielectric properties</subject><subject>Electrical properties</subject><subject>Europa</subject><subject>Freezing</subject><subject>Habitability</subject><subject>Ice</subject><subject>Ice cover</subject><subject>Ice formation</subject><subject>ice shell</subject><subject>ice‐penetrating radar</subject><subject>Icy satellites</subject><subject>Injection</subject><subject>Interfaces</subject><subject>Juices</subject><subject>Jupiter</subject><subject>Jupiter probes</subject><subject>Jupiter satellites</subject><subject>Lower bounds</subject><subject>Moon</subject><subject>Oceans</subject><subject>Radar</subject><subject>Radar measurement</subject><subject>Radio waves</subject><subject>REASON</subject><subject>Reservoirs</subject><subject>RIME</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>salt layer</subject><subject>Saltiness</subject><subject>Salts</subject><subject>Seawater</subject><subject>Space missions</subject><subject>Thickness measurement</subject><subject>Underground structures</subject><subject>Water</subject><subject>Water reservoirs</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kcFuEzEQhlcIJELhxgNY4sCFlLE9Wa-PKGpDpJWKWhBHa2LPNo6WdbA3KuHEI_CMPEm3BCFOnObX6Jt_fumvqpcSziUo-1aBwlUrwUrER9VMWsR5A2AeVzMAO2ll6qfVs1J2AKBBy1k1XlOgLJZbyuRHzvE7jTENInXihvpRtHTkXEQcxMUhpz29LmLtWdxsue8FFUHicxxCuhPrYUximeMYPfUPzK8fP68803T4zW9puGXxISfPpXB5Xj3pqC_84s88qz5dXnxcvp-3V6v18l0798oaNW9Q62BIIxvGDWLXKQnaIqDXnYVgVFBKhxphg6QWDQVpw2ISrFgr4_VZtT75hkQ7t8_xC-WjSxTd70XKt47yFLhnpxqNlqnxAQyGhSGLNrBXZHDjm0CT16uT1z6nrwcuo9ulQx6m-E7Lha6ttlJO1JsT5XMqJXP396sE99CR-7ejCVcn_C72fPwv61bXbd3UVul7y42RaA</recordid><startdate>20250116</startdate><enddate>20250116</enddate><creator>Wolfenbarger, N. S.</creator><creator>Blankenship, D. D.</creator><creator>Young, D. A.</creator><creator>Scanlan, K. M.</creator><creator>Chivers, C. J.</creator><creator>Findlay, D.</creator><creator>Steinbrügge, G. B.</creator><creator>Chan, K.</creator><creator>Grima, C.</creator><creator>Soderlund, K. M.</creator><creator>Schroeder, D. M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6483-0092</orcidid><orcidid>https://orcid.org/0000-0003-0205-4830</orcidid><orcidid>https://orcid.org/0000-0002-1050-7759</orcidid><orcidid>https://orcid.org/0000-0002-9242-8180</orcidid><orcidid>https://orcid.org/0000-0001-7990-3891</orcidid><orcidid>https://orcid.org/0000-0002-7901-3239</orcidid><orcidid>https://orcid.org/0000-0003-1916-3929</orcidid><orcidid>https://orcid.org/0000-0002-6866-8176</orcidid></search><sort><creationdate>20250116</creationdate><title>Radar Characterization of Salt Layers in Europa's Ice Shell as a Window Into Critical Ice‐Ocean Exchange Processes</title><author>Wolfenbarger, N. S. ; Blankenship, D. D. ; Young, D. A. ; Scanlan, K. M. ; Chivers, C. J. ; Findlay, D. ; Steinbrügge, G. B. ; Chan, K. ; Grima, C. ; Soderlund, K. M. ; Schroeder, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-8433d7a34e7e4b44ff21039404c3f90d72d223d640b4a258ad19d5258e2e327c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Dielectric properties</topic><topic>Electrical properties</topic><topic>Europa</topic><topic>Freezing</topic><topic>Habitability</topic><topic>Ice</topic><topic>Ice cover</topic><topic>Ice formation</topic><topic>ice shell</topic><topic>ice‐penetrating radar</topic><topic>Icy satellites</topic><topic>Injection</topic><topic>Interfaces</topic><topic>Juices</topic><topic>Jupiter</topic><topic>Jupiter probes</topic><topic>Jupiter satellites</topic><topic>Lower bounds</topic><topic>Moon</topic><topic>Oceans</topic><topic>Radar</topic><topic>Radar measurement</topic><topic>Radio waves</topic><topic>REASON</topic><topic>Reservoirs</topic><topic>RIME</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>salt layer</topic><topic>Saltiness</topic><topic>Salts</topic><topic>Seawater</topic><topic>Space missions</topic><topic>Thickness measurement</topic><topic>Underground structures</topic><topic>Water</topic><topic>Water reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfenbarger, N. S.</creatorcontrib><creatorcontrib>Blankenship, D. D.</creatorcontrib><creatorcontrib>Young, D. A.</creatorcontrib><creatorcontrib>Scanlan, K. M.</creatorcontrib><creatorcontrib>Chivers, C. J.</creatorcontrib><creatorcontrib>Findlay, D.</creatorcontrib><creatorcontrib>Steinbrügge, G. B.</creatorcontrib><creatorcontrib>Chan, K.</creatorcontrib><creatorcontrib>Grima, C.</creatorcontrib><creatorcontrib>Soderlund, K. M.</creatorcontrib><creatorcontrib>Schroeder, D. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfenbarger, N. S.</au><au>Blankenship, D. D.</au><au>Young, D. A.</au><au>Scanlan, K. M.</au><au>Chivers, C. J.</au><au>Findlay, D.</au><au>Steinbrügge, G. B.</au><au>Chan, K.</au><au>Grima, C.</au><au>Soderlund, K. M.</au><au>Schroeder, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radar Characterization of Salt Layers in Europa's Ice Shell as a Window Into Critical Ice‐Ocean Exchange Processes</atitle><jtitle>Geophysical research letters</jtitle><date>2025-01-16</date><risdate>2025</risdate><volume>52</volume><issue>1</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The potential habitability of Jupiter's moon Europa has motivated two missions: NASA's Europa Clipper and ESA's JUpiter ICy moons Explorer (JUICE). Both missions are equipped with ice‐penetrating radars which will transmit radio waves into the subsurface, recording reflections from interfaces defined by contrasts in ice shell dielectric properties. Assuming an MgSO4 ocean, we show that salt layers, formed through the freezing of subsurface liquid water reservoirs, can be detected by ice‐penetrating radar instruments on Europa Clipper and JUICE. Furthermore, because these features are thermodynamically stable within the minimally attenuating portion of Europa's ice shell, referred to here as the “pellucid region,” they could produce brighter reflections than deeper liquid water interfaces. We demonstrate how ice‐penetrating radar measurements of salt layer thickness could establish lower bounds on the parameter space of possible initial reservoir thickness and salinity, constrain the origin of reservoirs (ice shell melt vs. ocean injection), and—if sourced through ocean injection—the ocean salinity. Plain Language Summary Europa, one of Jupiter's moons, is thought to have the conditions necessary to support life as we know it. Europa is going to be explored by two missions: NASA's Europa Clipper and ESA's JUpiter ICy moons Explorer (JUICE). Both missions will use radar to look beneath the icy surface to search for liquid water and structures formed from liquid water freezing. In this work we show that salt layers, mixtures of salt and ice formed when salty water freezes into a solid, can be seen by radars on Europa Clipper and JUICE. These layers could give us clues about the water's original size and saltiness, and how these underground reservoirs formed—either from melting ice or ocean water pushing up into the ice shell. This research could help us understand more about Europa's ocean and its potential for life. Key Points Salt layers formed through the process of cryoconcentration represent radar‐detectable structure in Europa's ice shell Ice‐penetrating radar measurements of salt layer thickness can help to determine if ice shell reservoirs are sourced through injection of ocean water The salinity of Europa's ocean can be bounded through combined constraints on maximum initial reservoir thickness and salt layer thickness</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2024GL109144</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6483-0092</orcidid><orcidid>https://orcid.org/0000-0003-0205-4830</orcidid><orcidid>https://orcid.org/0000-0002-1050-7759</orcidid><orcidid>https://orcid.org/0000-0002-9242-8180</orcidid><orcidid>https://orcid.org/0000-0001-7990-3891</orcidid><orcidid>https://orcid.org/0000-0002-7901-3239</orcidid><orcidid>https://orcid.org/0000-0003-1916-3929</orcidid><orcidid>https://orcid.org/0000-0002-6866-8176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2025-01, Vol.52 (1), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_crossref_primary_10_1029_2024GL109144
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete
subjects Dielectric properties
Electrical properties
Europa
Freezing
Habitability
Ice
Ice cover
Ice formation
ice shell
ice‐penetrating radar
Icy satellites
Injection
Interfaces
Juices
Jupiter
Jupiter probes
Jupiter satellites
Lower bounds
Moon
Oceans
Radar
Radar measurement
Radio waves
REASON
Reservoirs
RIME
Salinity
Salinity effects
salt layer
Saltiness
Salts
Seawater
Space missions
Thickness measurement
Underground structures
Water
Water reservoirs
title Radar Characterization of Salt Layers in Europa's Ice Shell as a Window Into Critical Ice‐Ocean Exchange Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radar%20Characterization%20of%20Salt%20Layers%20in%20Europa's%20Ice%20Shell%20as%20a%20Window%20Into%20Critical%20Ice%E2%80%90Ocean%20Exchange%20Processes&rft.jtitle=Geophysical%20research%20letters&rft.au=Wolfenbarger,%20N.%20S.&rft.date=2025-01-16&rft.volume=52&rft.issue=1&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2024GL109144&rft_dat=%3Cproquest_doaj_%3E3153693911%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153693911&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_28349ea8cd074d57a949dec2a74bc8da&rfr_iscdi=true