First results from the retrieved column O/N 2 ratio from the Ionospheric Connection Explorer (ICON): Evidence of the impacts of nonmigrating tides

In near-Earth space, variations in thermospheric composition have important implications for thermosphere-ionosphere coupling. The ratio of O to N is often measured using far-UV airglow observations. Taking such airglow observations from space, looking below the Earth's limb allows for the tota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2021-09, Vol.126 (9)
Hauptverfasser: England, Scott L, Meier, R R, Frey, Harald U, Mende, Stephen B, Stephan, Andrew W, Krier, Christopher S, Cullens, Chihoko Y, Wu, Yen-Jung J, Triplett, Colin C, Sirk, Martin M, Korpela, Eric J, Harding, Brian J, Englert, Christoph R, Immel, Thomas J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In near-Earth space, variations in thermospheric composition have important implications for thermosphere-ionosphere coupling. The ratio of O to N is often measured using far-UV airglow observations. Taking such airglow observations from space, looking below the Earth's limb allows for the total column of O and N in the ionosphere to be determined. While these observations have enabled many previous studies, determining the impact of non-migrating tides on thermospheric composition has proved difficult, owing to a small contamination of the signal by recombination of ionospheric O . New ICON observations of far UV are presented here, and their general characteristics are shown. Using these, along with other observations and a global circulation model we show that during the morning hours and at latitudes away from the peak of the equatorial ionospheric anomaly, the impact of non-migrating tides on thermospheric composition can be observed. During March - April 2020, the column O/N ratio was seen to vary by 3 - 4 % of the zonal mean. By comparing the amplitude of the variation observed with that in the model, both the utility of these observations and a pathway to enable future studies is shown.
ISSN:2169-9380
2169-9402
DOI:10.1029/2021ja029575