Sector‐Based Top‐Down Estimates of NO x , SO 2 , and CO Emissions in East Asia

Top‐down estimates using satellite data provide important information on the sources of air pollutants. We develop a sector‐based 4D‐Var framework based on the GEOS‐Chem adjoint model to address the impacts of co‐emissions and chemical interactions on top‐down emission estimates. We apply OMI NO 2 ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2022-01, Vol.49 (2)
Hauptverfasser: Qu, Zhen, Henze, Daven K., Worden, Helen M., Jiang, Zhe, Gaubert, Benjamin, Theys, Nicolas, Wang, Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Geophysical research letters
container_volume 49
creator Qu, Zhen
Henze, Daven K.
Worden, Helen M.
Jiang, Zhe
Gaubert, Benjamin
Theys, Nicolas
Wang, Wei
description Top‐down estimates using satellite data provide important information on the sources of air pollutants. We develop a sector‐based 4D‐Var framework based on the GEOS‐Chem adjoint model to address the impacts of co‐emissions and chemical interactions on top‐down emission estimates. We apply OMI NO 2 , OMI SO 2 , and MOPITT CO observations to estimate NO x , SO 2 , and CO emissions in East Asia during 2005–2012. Posterior evaluations with surface measurements show reduced normalized mean bias (NMB) by 7% (NO 2 )–15% (SO 2 ) and normalized mean square error (NMSE) by 8% (SO 2 )–9% (NO 2 ) compared to a species‐based inversion. This new inversion captures the peak years of Chinese SO 2 (2007) and NO x (2011) emissions and attributes their drivers to industry and energy activities. The CO peak in 2007 in China is driven by residential and industry emissions. In India, the inversion attributes NO x and SO 2 trends mostly to energy and CO trend to residential emissions. Satellite observations are widely used to estimate air pollutant emissions and evaluate their trends. We design a new method based on Bayesian statistics to estimate emissions of major air pollutants in East Asia according to their sources (e.g., energy, industry, transportation, etc.). Results from this approach show better agreement with independent surface measurements than the previous estimates that use observations to optimize emissions by species and estimates that compile emissions using activity data and emission factors. This method provides a new perspective to analyze the trend of air pollutants by sources and is crucial for countries and regions that lack detailed and timely emission estimates for each source sector. A new sector‐based multispecies inversion framework is developed to estimate NO x , SO 2 , and CO emissions using satellite observations The sector‐based inversion leads to smaller biases and errors in surface NO 2 and SO 2 simulations than a species‐based inversion The framework provides a new perspective to analyze the trend of emissions by sectors and evaluates bottom‐up estimates
doi_str_mv 10.1029/2021GL096009
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2021GL096009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1029_2021GL096009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c809-bb1c6ee81d39ef544c15fa11a6bd5b841f2deebe3ef6b61aa19f8164e913e1c93</originalsourceid><addsrcrecordid>eNpNkEFKxEAURBtRMI7uPEAfYKL_pzs96eUYx1EIBpzsQyf5DREnGfID6s4jeEZPYosuXL2iKIqihLhEuEJI7HUCCW4LsAbAHokIrdZxBrA6FlFwgk5W5lScMT8DgAKFkXjaUTuP09fH541j6mQ1HoK-HV8HueG537uZWI5ePpbyTS7lrpRJgBs6mZdys--Z-3Fg2Ye441muuXfn4sS7F6aLPy5Edbep8vu4KLcP-bqI2wxs3DTYGqIMO2XJp1q3mHqH6EzTpU2m0ScdUUOKvGkMOofWZ2g0WVSErVULsfytbaeReSJfH6awd3qvEeqfO-r_d6hvdPFR_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sector‐Based Top‐Down Estimates of NO x , SO 2 , and CO Emissions in East Asia</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Qu, Zhen ; Henze, Daven K. ; Worden, Helen M. ; Jiang, Zhe ; Gaubert, Benjamin ; Theys, Nicolas ; Wang, Wei</creator><creatorcontrib>Qu, Zhen ; Henze, Daven K. ; Worden, Helen M. ; Jiang, Zhe ; Gaubert, Benjamin ; Theys, Nicolas ; Wang, Wei</creatorcontrib><description>Top‐down estimates using satellite data provide important information on the sources of air pollutants. We develop a sector‐based 4D‐Var framework based on the GEOS‐Chem adjoint model to address the impacts of co‐emissions and chemical interactions on top‐down emission estimates. We apply OMI NO 2 , OMI SO 2 , and MOPITT CO observations to estimate NO x , SO 2 , and CO emissions in East Asia during 2005–2012. Posterior evaluations with surface measurements show reduced normalized mean bias (NMB) by 7% (NO 2 )–15% (SO 2 ) and normalized mean square error (NMSE) by 8% (SO 2 )–9% (NO 2 ) compared to a species‐based inversion. This new inversion captures the peak years of Chinese SO 2 (2007) and NO x (2011) emissions and attributes their drivers to industry and energy activities. The CO peak in 2007 in China is driven by residential and industry emissions. In India, the inversion attributes NO x and SO 2 trends mostly to energy and CO trend to residential emissions. Satellite observations are widely used to estimate air pollutant emissions and evaluate their trends. We design a new method based on Bayesian statistics to estimate emissions of major air pollutants in East Asia according to their sources (e.g., energy, industry, transportation, etc.). Results from this approach show better agreement with independent surface measurements than the previous estimates that use observations to optimize emissions by species and estimates that compile emissions using activity data and emission factors. This method provides a new perspective to analyze the trend of air pollutants by sources and is crucial for countries and regions that lack detailed and timely emission estimates for each source sector. A new sector‐based multispecies inversion framework is developed to estimate NO x , SO 2 , and CO emissions using satellite observations The sector‐based inversion leads to smaller biases and errors in surface NO 2 and SO 2 simulations than a species‐based inversion The framework provides a new perspective to analyze the trend of emissions by sectors and evaluates bottom‐up estimates</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2021GL096009</identifier><language>eng</language><ispartof>Geophysical research letters, 2022-01, Vol.49 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c809-bb1c6ee81d39ef544c15fa11a6bd5b841f2deebe3ef6b61aa19f8164e913e1c93</citedby><cites>FETCH-LOGICAL-c809-bb1c6ee81d39ef544c15fa11a6bd5b841f2deebe3ef6b61aa19f8164e913e1c93</cites><orcidid>0000-0003-1013-5526 ; 0000-0002-5949-9307 ; 0000-0002-6595-0686 ; 0000-0002-3766-9838 ; 0000-0002-0086-7486 ; 0000-0001-6431-4963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Qu, Zhen</creatorcontrib><creatorcontrib>Henze, Daven K.</creatorcontrib><creatorcontrib>Worden, Helen M.</creatorcontrib><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Gaubert, Benjamin</creatorcontrib><creatorcontrib>Theys, Nicolas</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>Sector‐Based Top‐Down Estimates of NO x , SO 2 , and CO Emissions in East Asia</title><title>Geophysical research letters</title><description>Top‐down estimates using satellite data provide important information on the sources of air pollutants. We develop a sector‐based 4D‐Var framework based on the GEOS‐Chem adjoint model to address the impacts of co‐emissions and chemical interactions on top‐down emission estimates. We apply OMI NO 2 , OMI SO 2 , and MOPITT CO observations to estimate NO x , SO 2 , and CO emissions in East Asia during 2005–2012. Posterior evaluations with surface measurements show reduced normalized mean bias (NMB) by 7% (NO 2 )–15% (SO 2 ) and normalized mean square error (NMSE) by 8% (SO 2 )–9% (NO 2 ) compared to a species‐based inversion. This new inversion captures the peak years of Chinese SO 2 (2007) and NO x (2011) emissions and attributes their drivers to industry and energy activities. The CO peak in 2007 in China is driven by residential and industry emissions. In India, the inversion attributes NO x and SO 2 trends mostly to energy and CO trend to residential emissions. Satellite observations are widely used to estimate air pollutant emissions and evaluate their trends. We design a new method based on Bayesian statistics to estimate emissions of major air pollutants in East Asia according to their sources (e.g., energy, industry, transportation, etc.). Results from this approach show better agreement with independent surface measurements than the previous estimates that use observations to optimize emissions by species and estimates that compile emissions using activity data and emission factors. This method provides a new perspective to analyze the trend of air pollutants by sources and is crucial for countries and regions that lack detailed and timely emission estimates for each source sector. A new sector‐based multispecies inversion framework is developed to estimate NO x , SO 2 , and CO emissions using satellite observations The sector‐based inversion leads to smaller biases and errors in surface NO 2 and SO 2 simulations than a species‐based inversion The framework provides a new perspective to analyze the trend of emissions by sectors and evaluates bottom‐up estimates</description><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEFKxEAURBtRMI7uPEAfYKL_pzs96eUYx1EIBpzsQyf5DREnGfID6s4jeEZPYosuXL2iKIqihLhEuEJI7HUCCW4LsAbAHokIrdZxBrA6FlFwgk5W5lScMT8DgAKFkXjaUTuP09fH541j6mQ1HoK-HV8HueG537uZWI5ePpbyTS7lrpRJgBs6mZdys--Z-3Fg2Ye441muuXfn4sS7F6aLPy5Edbep8vu4KLcP-bqI2wxs3DTYGqIMO2XJp1q3mHqH6EzTpU2m0ScdUUOKvGkMOofWZ2g0WVSErVULsfytbaeReSJfH6awd3qvEeqfO-r_d6hvdPFR_Q</recordid><startdate>20220128</startdate><enddate>20220128</enddate><creator>Qu, Zhen</creator><creator>Henze, Daven K.</creator><creator>Worden, Helen M.</creator><creator>Jiang, Zhe</creator><creator>Gaubert, Benjamin</creator><creator>Theys, Nicolas</creator><creator>Wang, Wei</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1013-5526</orcidid><orcidid>https://orcid.org/0000-0002-5949-9307</orcidid><orcidid>https://orcid.org/0000-0002-6595-0686</orcidid><orcidid>https://orcid.org/0000-0002-3766-9838</orcidid><orcidid>https://orcid.org/0000-0002-0086-7486</orcidid><orcidid>https://orcid.org/0000-0001-6431-4963</orcidid></search><sort><creationdate>20220128</creationdate><title>Sector‐Based Top‐Down Estimates of NO x , SO 2 , and CO Emissions in East Asia</title><author>Qu, Zhen ; Henze, Daven K. ; Worden, Helen M. ; Jiang, Zhe ; Gaubert, Benjamin ; Theys, Nicolas ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c809-bb1c6ee81d39ef544c15fa11a6bd5b841f2deebe3ef6b61aa19f8164e913e1c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Zhen</creatorcontrib><creatorcontrib>Henze, Daven K.</creatorcontrib><creatorcontrib>Worden, Helen M.</creatorcontrib><creatorcontrib>Jiang, Zhe</creatorcontrib><creatorcontrib>Gaubert, Benjamin</creatorcontrib><creatorcontrib>Theys, Nicolas</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>CrossRef</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Zhen</au><au>Henze, Daven K.</au><au>Worden, Helen M.</au><au>Jiang, Zhe</au><au>Gaubert, Benjamin</au><au>Theys, Nicolas</au><au>Wang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sector‐Based Top‐Down Estimates of NO x , SO 2 , and CO Emissions in East Asia</atitle><jtitle>Geophysical research letters</jtitle><date>2022-01-28</date><risdate>2022</risdate><volume>49</volume><issue>2</issue><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Top‐down estimates using satellite data provide important information on the sources of air pollutants. We develop a sector‐based 4D‐Var framework based on the GEOS‐Chem adjoint model to address the impacts of co‐emissions and chemical interactions on top‐down emission estimates. We apply OMI NO 2 , OMI SO 2 , and MOPITT CO observations to estimate NO x , SO 2 , and CO emissions in East Asia during 2005–2012. Posterior evaluations with surface measurements show reduced normalized mean bias (NMB) by 7% (NO 2 )–15% (SO 2 ) and normalized mean square error (NMSE) by 8% (SO 2 )–9% (NO 2 ) compared to a species‐based inversion. This new inversion captures the peak years of Chinese SO 2 (2007) and NO x (2011) emissions and attributes their drivers to industry and energy activities. The CO peak in 2007 in China is driven by residential and industry emissions. In India, the inversion attributes NO x and SO 2 trends mostly to energy and CO trend to residential emissions. Satellite observations are widely used to estimate air pollutant emissions and evaluate their trends. We design a new method based on Bayesian statistics to estimate emissions of major air pollutants in East Asia according to their sources (e.g., energy, industry, transportation, etc.). Results from this approach show better agreement with independent surface measurements than the previous estimates that use observations to optimize emissions by species and estimates that compile emissions using activity data and emission factors. This method provides a new perspective to analyze the trend of air pollutants by sources and is crucial for countries and regions that lack detailed and timely emission estimates for each source sector. A new sector‐based multispecies inversion framework is developed to estimate NO x , SO 2 , and CO emissions using satellite observations The sector‐based inversion leads to smaller biases and errors in surface NO 2 and SO 2 simulations than a species‐based inversion The framework provides a new perspective to analyze the trend of emissions by sectors and evaluates bottom‐up estimates</abstract><doi>10.1029/2021GL096009</doi><orcidid>https://orcid.org/0000-0003-1013-5526</orcidid><orcidid>https://orcid.org/0000-0002-5949-9307</orcidid><orcidid>https://orcid.org/0000-0002-6595-0686</orcidid><orcidid>https://orcid.org/0000-0002-3766-9838</orcidid><orcidid>https://orcid.org/0000-0002-0086-7486</orcidid><orcidid>https://orcid.org/0000-0001-6431-4963</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2022-01, Vol.49 (2)
issn 0094-8276
1944-8007
language eng
recordid cdi_crossref_primary_10_1029_2021GL096009
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
title Sector‐Based Top‐Down Estimates of NO x , SO 2 , and CO Emissions in East Asia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sector%E2%80%90Based%20Top%E2%80%90Down%20Estimates%20of%20NO%20x%20,%20SO%202%20,%20and%20CO%20Emissions%20in%20East%20Asia&rft.jtitle=Geophysical%20research%20letters&rft.au=Qu,%20Zhen&rft.date=2022-01-28&rft.volume=49&rft.issue=2&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2021GL096009&rft_dat=%3Ccrossref%3E10_1029_2021GL096009%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true