Interaction of Saturn’s Hexagon with Convective Storms
In March 2020 a convective storm erupted at planetographic latitude 76°N in the southern flank of Saturn’s long-lived hexagonal wave. The storm reached a zonal size of 4,500 km and developed a tail extending zonally 33,000 km. Two new short-lived storms erupted in May in the hexagon edge. These stor...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2021-04, Vol.48 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 48 |
creator | Sánchez-Lavega, A García-Melendo, E Río-Gaztelurrutia, T del Hueso, R Simon, A Wong, M H Ahrens-Velásquez, K Soria, M Barry, T Go, C Foster, C |
description | In March 2020 a convective storm erupted at planetographic latitude 76°N in the southern flank of Saturn’s long-lived hexagonal wave. The storm reached a zonal size of 4,500 km and developed a tail extending zonally 33,000 km. Two new short-lived storms erupted in May in the hexagon edge. These storms formed after the convective storms that took place in 2018 in nearby latitudes. There were no noticeable changes in the zonal profile of Saturn's polar winds in 2018-2020. Measurements of the longitude position of the vertices of the hexagon throughout this period yield a value for its period of rotation equal to that of System III of radio-rotation measured at the time of Voyagers. We report changes in the hexagon clouds related to the activity of the storms. Our study reinforces the idea that Saturn’s hexagon is a well rooted structure with a possible direct relationship with the bulk rotation of the planet. |
doi_str_mv | 10.1029/2021GL092461 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2021GL092461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GRL62279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3379-495a90edda7371fc0bb1521532baa8391b11c4415eaaf83dc169e8fc3b476d2c3</originalsourceid><addsrcrecordid>eNp9z8FKxDAQBuAgCtbVm0cPfQCrM0naNEcp2l0oCK6eyzRNtbLbSlJ33Zuv4ev5JFbrwZOnGYbvH_gZO0W4QOD6kgPHvADNZYJ7LEAtZZQCqH0WAOhx5yo5ZEfePwOAAIEBSxfdYB2Zoe27sG_CJQ2vrvt8__Dh3L7R43jdtsNTmPXdxo5qY8Pl0Lu1P2YHDa28PfmdM_Zwc32fzaPiNl9kV0VkhFA6kjomDbauSQmFjYGqwphjLHhFlAqNFaKREmNL1KSiNphomzZGVFIlNTdixs6nv8b13jvblC-uXZPblQjld-vyb-uR84lv25Xd_WvL_K5IOFd6DJ1NoY48ld3g_A8EQJkIJb4A9VphYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interaction of Saturn’s Hexagon with Convective Storms</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>NASA Technical Reports Server</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sánchez-Lavega, A ; García-Melendo, E ; Río-Gaztelurrutia, T del ; Hueso, R ; Simon, A ; Wong, M H ; Ahrens-Velásquez, K ; Soria, M ; Barry, T ; Go, C ; Foster, C</creator><creatorcontrib>Sánchez-Lavega, A ; García-Melendo, E ; Río-Gaztelurrutia, T del ; Hueso, R ; Simon, A ; Wong, M H ; Ahrens-Velásquez, K ; Soria, M ; Barry, T ; Go, C ; Foster, C</creatorcontrib><description>In March 2020 a convective storm erupted at planetographic latitude 76°N in the southern flank of Saturn’s long-lived hexagonal wave. The storm reached a zonal size of 4,500 km and developed a tail extending zonally 33,000 km. Two new short-lived storms erupted in May in the hexagon edge. These storms formed after the convective storms that took place in 2018 in nearby latitudes. There were no noticeable changes in the zonal profile of Saturn's polar winds in 2018-2020. Measurements of the longitude position of the vertices of the hexagon throughout this period yield a value for its period of rotation equal to that of System III of radio-rotation measured at the time of Voyagers. We report changes in the hexagon clouds related to the activity of the storms. Our study reinforces the idea that Saturn’s hexagon is a well rooted structure with a possible direct relationship with the bulk rotation of the planet.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2021GL092461</identifier><language>eng</language><publisher>Goddard Space Flight Center: Wiley</publisher><subject>convective storms ; hexagon wave ; Lunar And Planetary Science And Exploration ; Saturn atmosphere</subject><ispartof>Geophysical research letters, 2021-04, Vol.48 (8), p.n/a</ispartof><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3379-495a90edda7371fc0bb1521532baa8391b11c4415eaaf83dc169e8fc3b476d2c3</citedby><cites>FETCH-LOGICAL-c3379-495a90edda7371fc0bb1521532baa8391b11c4415eaaf83dc169e8fc3b476d2c3</cites><orcidid>0000-0003-0169-123X ; 0000-0002-3354-1140 ; 0000-0003-2804-5086 ; 0000-0003-4641-6186 ; 0000-0002-4112-6078 ; 0000-0001-8552-226X ; 0000-0001-7234-7634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021GL092461$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021GL092461$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,800,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Sánchez-Lavega, A</creatorcontrib><creatorcontrib>García-Melendo, E</creatorcontrib><creatorcontrib>Río-Gaztelurrutia, T del</creatorcontrib><creatorcontrib>Hueso, R</creatorcontrib><creatorcontrib>Simon, A</creatorcontrib><creatorcontrib>Wong, M H</creatorcontrib><creatorcontrib>Ahrens-Velásquez, K</creatorcontrib><creatorcontrib>Soria, M</creatorcontrib><creatorcontrib>Barry, T</creatorcontrib><creatorcontrib>Go, C</creatorcontrib><creatorcontrib>Foster, C</creatorcontrib><title>Interaction of Saturn’s Hexagon with Convective Storms</title><title>Geophysical research letters</title><description>In March 2020 a convective storm erupted at planetographic latitude 76°N in the southern flank of Saturn’s long-lived hexagonal wave. The storm reached a zonal size of 4,500 km and developed a tail extending zonally 33,000 km. Two new short-lived storms erupted in May in the hexagon edge. These storms formed after the convective storms that took place in 2018 in nearby latitudes. There were no noticeable changes in the zonal profile of Saturn's polar winds in 2018-2020. Measurements of the longitude position of the vertices of the hexagon throughout this period yield a value for its period of rotation equal to that of System III of radio-rotation measured at the time of Voyagers. We report changes in the hexagon clouds related to the activity of the storms. Our study reinforces the idea that Saturn’s hexagon is a well rooted structure with a possible direct relationship with the bulk rotation of the planet.</description><subject>convective storms</subject><subject>hexagon wave</subject><subject>Lunar And Planetary Science And Exploration</subject><subject>Saturn atmosphere</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9z8FKxDAQBuAgCtbVm0cPfQCrM0naNEcp2l0oCK6eyzRNtbLbSlJ33Zuv4ev5JFbrwZOnGYbvH_gZO0W4QOD6kgPHvADNZYJ7LEAtZZQCqH0WAOhx5yo5ZEfePwOAAIEBSxfdYB2Zoe27sG_CJQ2vrvt8__Dh3L7R43jdtsNTmPXdxo5qY8Pl0Lu1P2YHDa28PfmdM_Zwc32fzaPiNl9kV0VkhFA6kjomDbauSQmFjYGqwphjLHhFlAqNFaKREmNL1KSiNphomzZGVFIlNTdixs6nv8b13jvblC-uXZPblQjld-vyb-uR84lv25Xd_WvL_K5IOFd6DJ1NoY48ld3g_A8EQJkIJb4A9VphYQ</recordid><startdate>20210428</startdate><enddate>20210428</enddate><creator>Sánchez-Lavega, A</creator><creator>García-Melendo, E</creator><creator>Río-Gaztelurrutia, T del</creator><creator>Hueso, R</creator><creator>Simon, A</creator><creator>Wong, M H</creator><creator>Ahrens-Velásquez, K</creator><creator>Soria, M</creator><creator>Barry, T</creator><creator>Go, C</creator><creator>Foster, C</creator><general>Wiley</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0169-123X</orcidid><orcidid>https://orcid.org/0000-0002-3354-1140</orcidid><orcidid>https://orcid.org/0000-0003-2804-5086</orcidid><orcidid>https://orcid.org/0000-0003-4641-6186</orcidid><orcidid>https://orcid.org/0000-0002-4112-6078</orcidid><orcidid>https://orcid.org/0000-0001-8552-226X</orcidid><orcidid>https://orcid.org/0000-0001-7234-7634</orcidid></search><sort><creationdate>20210428</creationdate><title>Interaction of Saturn’s Hexagon with Convective Storms</title><author>Sánchez-Lavega, A ; García-Melendo, E ; Río-Gaztelurrutia, T del ; Hueso, R ; Simon, A ; Wong, M H ; Ahrens-Velásquez, K ; Soria, M ; Barry, T ; Go, C ; Foster, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3379-495a90edda7371fc0bb1521532baa8391b11c4415eaaf83dc169e8fc3b476d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>convective storms</topic><topic>hexagon wave</topic><topic>Lunar And Planetary Science And Exploration</topic><topic>Saturn atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Lavega, A</creatorcontrib><creatorcontrib>García-Melendo, E</creatorcontrib><creatorcontrib>Río-Gaztelurrutia, T del</creatorcontrib><creatorcontrib>Hueso, R</creatorcontrib><creatorcontrib>Simon, A</creatorcontrib><creatorcontrib>Wong, M H</creatorcontrib><creatorcontrib>Ahrens-Velásquez, K</creatorcontrib><creatorcontrib>Soria, M</creatorcontrib><creatorcontrib>Barry, T</creatorcontrib><creatorcontrib>Go, C</creatorcontrib><creatorcontrib>Foster, C</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Lavega, A</au><au>García-Melendo, E</au><au>Río-Gaztelurrutia, T del</au><au>Hueso, R</au><au>Simon, A</au><au>Wong, M H</au><au>Ahrens-Velásquez, K</au><au>Soria, M</au><au>Barry, T</au><au>Go, C</au><au>Foster, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of Saturn’s Hexagon with Convective Storms</atitle><jtitle>Geophysical research letters</jtitle><date>2021-04-28</date><risdate>2021</risdate><volume>48</volume><issue>8</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>In March 2020 a convective storm erupted at planetographic latitude 76°N in the southern flank of Saturn’s long-lived hexagonal wave. The storm reached a zonal size of 4,500 km and developed a tail extending zonally 33,000 km. Two new short-lived storms erupted in May in the hexagon edge. These storms formed after the convective storms that took place in 2018 in nearby latitudes. There were no noticeable changes in the zonal profile of Saturn's polar winds in 2018-2020. Measurements of the longitude position of the vertices of the hexagon throughout this period yield a value for its period of rotation equal to that of System III of radio-rotation measured at the time of Voyagers. We report changes in the hexagon clouds related to the activity of the storms. Our study reinforces the idea that Saturn’s hexagon is a well rooted structure with a possible direct relationship with the bulk rotation of the planet.</abstract><cop>Goddard Space Flight Center</cop><pub>Wiley</pub><doi>10.1029/2021GL092461</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0169-123X</orcidid><orcidid>https://orcid.org/0000-0002-3354-1140</orcidid><orcidid>https://orcid.org/0000-0003-2804-5086</orcidid><orcidid>https://orcid.org/0000-0003-4641-6186</orcidid><orcidid>https://orcid.org/0000-0002-4112-6078</orcidid><orcidid>https://orcid.org/0000-0001-8552-226X</orcidid><orcidid>https://orcid.org/0000-0001-7234-7634</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2021-04, Vol.48 (8), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_crossref_primary_10_1029_2021GL092461 |
source | Wiley Online Library Free Content; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; NASA Technical Reports Server; EZB-FREE-00999 freely available EZB journals |
subjects | convective storms hexagon wave Lunar And Planetary Science And Exploration Saturn atmosphere |
title | Interaction of Saturn’s Hexagon with Convective Storms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20Saturn%E2%80%99s%20Hexagon%20with%20Convective%20Storms&rft.jtitle=Geophysical%20research%20letters&rft.au=S%C3%A1nchez-Lavega,%20A&rft.date=2021-04-28&rft.volume=48&rft.issue=8&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2021GL092461&rft_dat=%3Cwiley_cross%3EGRL62279%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |