Thermospheric Impact on the Magnetosphere Through Ionospheric Outflow

We have taken a key step in evaluating the importance of ionospheric outflows relative to electrodynamic coupling in the thermosphere’s impact on geospace dynamics. We isolated the thermosphere’s material influence and suppressed electrodynamic feedback in whole geospace simulations by imposing a ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2021-02, Vol.126 (2), p.n/a
Hauptverfasser: Pham, K. H., Lotko, W., Varney, R. H., Zhang, B., Liu, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 126
creator Pham, K. H.
Lotko, W.
Varney, R. H.
Zhang, B.
Liu, J.
description We have taken a key step in evaluating the importance of ionospheric outflows relative to electrodynamic coupling in the thermosphere’s impact on geospace dynamics. We isolated the thermosphere’s material influence and suppressed electrodynamic feedback in whole geospace simulations by imposing a time‐constant ionospheric conductance in the ionospheric Ohm’s law in a coupled model that combines the multifluid Lyon‐Fedder‐Mobarry magnetosphere model with the Thermosphere Ionosphere Electrodynamic General Circulation Model and the Ionosphere Polar Wind Model that includes both polar wind and transversely accelerated ion species. Numerical experiments were conducted for different thermospheric states parameterized by F10.7 for interplanetary driving representative of the stream interaction region that swept past Earth on March 27, 2003. We demonstrate that thermosphere through its regulation of ionospheric outflows influences magnetosphere‐ionosphere (MI) convection and the ion composition, symmetries, x‐line perimeter and magnetic merging of the magnetosphere. Feedback to the ionosphere‐thermosphere from evolving MI convection, and Alfvénic Poynting fluxes and soft (∼few 100 eV) electron precipitation originating in the magnetosphere, in turn, modify the evolving O+ outflow properties. The simulation results identify a variety of observed magnetospheric features that are attributable directly to the thermosphere’s material influence: Asymmetries in O+ outflow fluxes and velocities in the pre/postnoon low‐altitude magnetosphere, dawn/duskside lobes and pre/postmidnight plasmasheet; O+ distribution of the plasmasheet; magnetic x‐line location and reconnection rate along it. O+ outflows during solar maximum conditions (high F10.7) tend to counteract the plasmasheet’s pre/postmidnight asymmetries caused by the night‐to‐day gradient in ionospheric Hall conductance. Key Points A global geospace model including ionospheric outflows was used to diagnose material impacts of the thermosphere on geospace Thermospheric states influence the distributions, fluxes and other properties of O+ outflows and their feedback on geospace dynamics Variations in thermospheric EUV irradiance manifest in the ion composition, shape, symmetries, and magnetic merging of the magnetosphere
doi_str_mv 10.1029/2020JA028656
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2020JA028656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRA56261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4261-f74e87cfa302d33d98b65488bc04fcab10da2fee31172d8e2ff0cd3c0601cbbf3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOObe_AH5AVZvkjZNH8uYs2MykPpc0jRZK21Tko6xf2-lKj55X87l3o_D4SB0T-CRAE2eKFDYpUAFj_gVWlDCkyAJgV7_7EzALVp5_wHTiOlEogXa5LV2nfXDJI3CWTdINWLb47HW-FUeez3OT43z2tnTscaZ7X_5w2k0rT3foRsjW69X37pE78-bfP0S7A_bbJ3uAxVSTgITh1rEykgGtGKsSkTJo1CIUkFolCwJVJIarRkhMa2EpsaAqpgCDkSVpWFL9DD7Kme9d9oUg2s66S4FgeKrheJvCxPOZvzctPryL1vstm9pxKeU7BNLmF74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermospheric Impact on the Magnetosphere Through Ionospheric Outflow</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Pham, K. H. ; Lotko, W. ; Varney, R. H. ; Zhang, B. ; Liu, J.</creator><creatorcontrib>Pham, K. H. ; Lotko, W. ; Varney, R. H. ; Zhang, B. ; Liu, J.</creatorcontrib><description>We have taken a key step in evaluating the importance of ionospheric outflows relative to electrodynamic coupling in the thermosphere’s impact on geospace dynamics. We isolated the thermosphere’s material influence and suppressed electrodynamic feedback in whole geospace simulations by imposing a time‐constant ionospheric conductance in the ionospheric Ohm’s law in a coupled model that combines the multifluid Lyon‐Fedder‐Mobarry magnetosphere model with the Thermosphere Ionosphere Electrodynamic General Circulation Model and the Ionosphere Polar Wind Model that includes both polar wind and transversely accelerated ion species. Numerical experiments were conducted for different thermospheric states parameterized by F10.7 for interplanetary driving representative of the stream interaction region that swept past Earth on March 27, 2003. We demonstrate that thermosphere through its regulation of ionospheric outflows influences magnetosphere‐ionosphere (MI) convection and the ion composition, symmetries, x‐line perimeter and magnetic merging of the magnetosphere. Feedback to the ionosphere‐thermosphere from evolving MI convection, and Alfvénic Poynting fluxes and soft (∼few 100 eV) electron precipitation originating in the magnetosphere, in turn, modify the evolving O+ outflow properties. The simulation results identify a variety of observed magnetospheric features that are attributable directly to the thermosphere’s material influence: Asymmetries in O+ outflow fluxes and velocities in the pre/postnoon low‐altitude magnetosphere, dawn/duskside lobes and pre/postmidnight plasmasheet; O+ distribution of the plasmasheet; magnetic x‐line location and reconnection rate along it. O+ outflows during solar maximum conditions (high F10.7) tend to counteract the plasmasheet’s pre/postmidnight asymmetries caused by the night‐to‐day gradient in ionospheric Hall conductance. Key Points A global geospace model including ionospheric outflows was used to diagnose material impacts of the thermosphere on geospace Thermospheric states influence the distributions, fluxes and other properties of O+ outflows and their feedback on geospace dynamics Variations in thermospheric EUV irradiance manifest in the ion composition, shape, symmetries, and magnetic merging of the magnetosphere</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2020JA028656</identifier><language>eng</language><subject>Coupled MIT ; Ion Outflow ; Ionosphere ; Magnetosphere ; Thermosphere</subject><ispartof>Journal of geophysical research. Space physics, 2021-02, Vol.126 (2), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4261-f74e87cfa302d33d98b65488bc04fcab10da2fee31172d8e2ff0cd3c0601cbbf3</citedby><cites>FETCH-LOGICAL-c4261-f74e87cfa302d33d98b65488bc04fcab10da2fee31172d8e2ff0cd3c0601cbbf3</cites><orcidid>0000-0002-3859-1593 ; 0000-0001-5031-5519 ; 0000-0002-5976-2638 ; 0000-0002-1555-6023 ; 0000-0002-6584-0647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JA028656$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JA028656$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids></links><search><creatorcontrib>Pham, K. H.</creatorcontrib><creatorcontrib>Lotko, W.</creatorcontrib><creatorcontrib>Varney, R. H.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><title>Thermospheric Impact on the Magnetosphere Through Ionospheric Outflow</title><title>Journal of geophysical research. Space physics</title><description>We have taken a key step in evaluating the importance of ionospheric outflows relative to electrodynamic coupling in the thermosphere’s impact on geospace dynamics. We isolated the thermosphere’s material influence and suppressed electrodynamic feedback in whole geospace simulations by imposing a time‐constant ionospheric conductance in the ionospheric Ohm’s law in a coupled model that combines the multifluid Lyon‐Fedder‐Mobarry magnetosphere model with the Thermosphere Ionosphere Electrodynamic General Circulation Model and the Ionosphere Polar Wind Model that includes both polar wind and transversely accelerated ion species. Numerical experiments were conducted for different thermospheric states parameterized by F10.7 for interplanetary driving representative of the stream interaction region that swept past Earth on March 27, 2003. We demonstrate that thermosphere through its regulation of ionospheric outflows influences magnetosphere‐ionosphere (MI) convection and the ion composition, symmetries, x‐line perimeter and magnetic merging of the magnetosphere. Feedback to the ionosphere‐thermosphere from evolving MI convection, and Alfvénic Poynting fluxes and soft (∼few 100 eV) electron precipitation originating in the magnetosphere, in turn, modify the evolving O+ outflow properties. The simulation results identify a variety of observed magnetospheric features that are attributable directly to the thermosphere’s material influence: Asymmetries in O+ outflow fluxes and velocities in the pre/postnoon low‐altitude magnetosphere, dawn/duskside lobes and pre/postmidnight plasmasheet; O+ distribution of the plasmasheet; magnetic x‐line location and reconnection rate along it. O+ outflows during solar maximum conditions (high F10.7) tend to counteract the plasmasheet’s pre/postmidnight asymmetries caused by the night‐to‐day gradient in ionospheric Hall conductance. Key Points A global geospace model including ionospheric outflows was used to diagnose material impacts of the thermosphere on geospace Thermospheric states influence the distributions, fluxes and other properties of O+ outflows and their feedback on geospace dynamics Variations in thermospheric EUV irradiance manifest in the ion composition, shape, symmetries, and magnetic merging of the magnetosphere</description><subject>Coupled MIT</subject><subject>Ion Outflow</subject><subject>Ionosphere</subject><subject>Magnetosphere</subject><subject>Thermosphere</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOObe_AH5AVZvkjZNH8uYs2MykPpc0jRZK21Tko6xf2-lKj55X87l3o_D4SB0T-CRAE2eKFDYpUAFj_gVWlDCkyAJgV7_7EzALVp5_wHTiOlEogXa5LV2nfXDJI3CWTdINWLb47HW-FUeez3OT43z2tnTscaZ7X_5w2k0rT3foRsjW69X37pE78-bfP0S7A_bbJ3uAxVSTgITh1rEykgGtGKsSkTJo1CIUkFolCwJVJIarRkhMa2EpsaAqpgCDkSVpWFL9DD7Kme9d9oUg2s66S4FgeKrheJvCxPOZvzctPryL1vstm9pxKeU7BNLmF74</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Pham, K. H.</creator><creator>Lotko, W.</creator><creator>Varney, R. H.</creator><creator>Zhang, B.</creator><creator>Liu, J.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3859-1593</orcidid><orcidid>https://orcid.org/0000-0001-5031-5519</orcidid><orcidid>https://orcid.org/0000-0002-5976-2638</orcidid><orcidid>https://orcid.org/0000-0002-1555-6023</orcidid><orcidid>https://orcid.org/0000-0002-6584-0647</orcidid></search><sort><creationdate>202102</creationdate><title>Thermospheric Impact on the Magnetosphere Through Ionospheric Outflow</title><author>Pham, K. H. ; Lotko, W. ; Varney, R. H. ; Zhang, B. ; Liu, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4261-f74e87cfa302d33d98b65488bc04fcab10da2fee31172d8e2ff0cd3c0601cbbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coupled MIT</topic><topic>Ion Outflow</topic><topic>Ionosphere</topic><topic>Magnetosphere</topic><topic>Thermosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, K. H.</creatorcontrib><creatorcontrib>Lotko, W.</creatorcontrib><creatorcontrib>Varney, R. H.</creatorcontrib><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, K. H.</au><au>Lotko, W.</au><au>Varney, R. H.</au><au>Zhang, B.</au><au>Liu, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermospheric Impact on the Magnetosphere Through Ionospheric Outflow</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2021-02</date><risdate>2021</risdate><volume>126</volume><issue>2</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We have taken a key step in evaluating the importance of ionospheric outflows relative to electrodynamic coupling in the thermosphere’s impact on geospace dynamics. We isolated the thermosphere’s material influence and suppressed electrodynamic feedback in whole geospace simulations by imposing a time‐constant ionospheric conductance in the ionospheric Ohm’s law in a coupled model that combines the multifluid Lyon‐Fedder‐Mobarry magnetosphere model with the Thermosphere Ionosphere Electrodynamic General Circulation Model and the Ionosphere Polar Wind Model that includes both polar wind and transversely accelerated ion species. Numerical experiments were conducted for different thermospheric states parameterized by F10.7 for interplanetary driving representative of the stream interaction region that swept past Earth on March 27, 2003. We demonstrate that thermosphere through its regulation of ionospheric outflows influences magnetosphere‐ionosphere (MI) convection and the ion composition, symmetries, x‐line perimeter and magnetic merging of the magnetosphere. Feedback to the ionosphere‐thermosphere from evolving MI convection, and Alfvénic Poynting fluxes and soft (∼few 100 eV) electron precipitation originating in the magnetosphere, in turn, modify the evolving O+ outflow properties. The simulation results identify a variety of observed magnetospheric features that are attributable directly to the thermosphere’s material influence: Asymmetries in O+ outflow fluxes and velocities in the pre/postnoon low‐altitude magnetosphere, dawn/duskside lobes and pre/postmidnight plasmasheet; O+ distribution of the plasmasheet; magnetic x‐line location and reconnection rate along it. O+ outflows during solar maximum conditions (high F10.7) tend to counteract the plasmasheet’s pre/postmidnight asymmetries caused by the night‐to‐day gradient in ionospheric Hall conductance. Key Points A global geospace model including ionospheric outflows was used to diagnose material impacts of the thermosphere on geospace Thermospheric states influence the distributions, fluxes and other properties of O+ outflows and their feedback on geospace dynamics Variations in thermospheric EUV irradiance manifest in the ion composition, shape, symmetries, and magnetic merging of the magnetosphere</abstract><doi>10.1029/2020JA028656</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3859-1593</orcidid><orcidid>https://orcid.org/0000-0001-5031-5519</orcidid><orcidid>https://orcid.org/0000-0002-5976-2638</orcidid><orcidid>https://orcid.org/0000-0002-1555-6023</orcidid><orcidid>https://orcid.org/0000-0002-6584-0647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2021-02, Vol.126 (2), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_crossref_primary_10_1029_2020JA028656
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Coupled MIT
Ion Outflow
Ionosphere
Magnetosphere
Thermosphere
title Thermospheric Impact on the Magnetosphere Through Ionospheric Outflow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermospheric%20Impact%20on%20the%20Magnetosphere%20Through%20Ionospheric%20Outflow&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Pham,%20K.%20H.&rft.date=2021-02&rft.volume=126&rft.issue=2&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2020JA028656&rft_dat=%3Cwiley_cross%3EJGRA56261%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true