Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado

The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM ) from wildfires are limited by the lack of accurate high-resolution PM exposure data over fire days. Satellite-based aerosol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2018-08, Vol.123 (15), p.8159-8171
Hauptverfasser: Geng, Guannan, Murray, Nancy L, Tong, Daniel, Fu, Joshua S, Hu, Xuefei, Lee, Pius, Meng, Xia, Chang, Howard H, Liu, Yang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8171
container_issue 15
container_start_page 8159
container_title Journal of geophysical research. Atmospheres
container_volume 123
creator Geng, Guannan
Murray, Nancy L
Tong, Daniel
Fu, Joshua S
Hu, Xuefei
Lee, Pius
Meng, Xia
Chang, Howard H
Liu, Yang
description The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM ) from wildfires are limited by the lack of accurate high-resolution PM exposure data over fire days. Satellite-based aerosol optical depth (AOD) data can provide additional information in ground PM concentrations and has been widely used in previous studies. However, the low background concentration, complex terrain, and large wildfire sources add to the challenge of estimating PM concentrations in the western United States. In this study, we applied a Bayesian ensemble model that combined information from the 1 km resolution AOD products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily PM concentrations over fire seasons (April to September) in Colorado for 2011-2014. Our model had a 10-fold cross-validated R of 0.66 and root-mean-squared error of 2.00 μg/m , outperformed the multistage model, especially on the fire days. Elevated PM concentrations over large fire events were successfully captured. The modeling technique demonstrated in this study could support future short-term and long-term epidemiological studies of wildfire PM .
doi_str_mv 10.1029/2018JD028573
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2018JD028573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31289705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1413-6e7b8fc83ac5af6580c212a9a977f9059620342051fd714ef31aa673df84e8223</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMottTuXEt-gFNzk8lrqdOODyoKVXA3pDOJRKYzJZku-u-NVIt3cy_cj8M5B6FLIDMgVN9QAuppTqjikp2gMQWhM6W1OD3e8mOEpjF-kTSKsJzn52jEgKYP4WNUrsxg29YPNrsz0TZ4bny7x6_PmM44XsTBbxIQ8XwXfPeJSx8sXlkT-y5i3-Gib_tgmv4CnTnTRjv93RP0Xi7eiods-XL_WNwusxpyYJmwcq1crZipuXGCK1JToEYbLaXThGtBk0VKOLhGQm4dA2OEZI1TuVWUsgm6PujWoY8xWFdtQ3IY9hWQ6qeR6n8jCb864NvdemObI_yXn30DBw9YYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado</title><source>Wiley Online Library Journals</source><source>Alma/SFX Local Collection</source><creator>Geng, Guannan ; Murray, Nancy L ; Tong, Daniel ; Fu, Joshua S ; Hu, Xuefei ; Lee, Pius ; Meng, Xia ; Chang, Howard H ; Liu, Yang</creator><creatorcontrib>Geng, Guannan ; Murray, Nancy L ; Tong, Daniel ; Fu, Joshua S ; Hu, Xuefei ; Lee, Pius ; Meng, Xia ; Chang, Howard H ; Liu, Yang</creatorcontrib><description>The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM ) from wildfires are limited by the lack of accurate high-resolution PM exposure data over fire days. Satellite-based aerosol optical depth (AOD) data can provide additional information in ground PM concentrations and has been widely used in previous studies. However, the low background concentration, complex terrain, and large wildfire sources add to the challenge of estimating PM concentrations in the western United States. In this study, we applied a Bayesian ensemble model that combined information from the 1 km resolution AOD products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily PM concentrations over fire seasons (April to September) in Colorado for 2011-2014. Our model had a 10-fold cross-validated R of 0.66 and root-mean-squared error of 2.00 μg/m , outperformed the multistage model, especially on the fire days. Elevated PM concentrations over large fire events were successfully captured. The modeling technique demonstrated in this study could support future short-term and long-term epidemiological studies of wildfire PM .</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD028573</identifier><identifier>PMID: 31289705</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of geophysical research. Atmospheres, 2018-08, Vol.123 (15), p.8159-8171</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1413-6e7b8fc83ac5af6580c212a9a977f9059620342051fd714ef31aa673df84e8223</citedby><cites>FETCH-LOGICAL-c1413-6e7b8fc83ac5af6580c212a9a977f9059620342051fd714ef31aa673df84e8223</cites><orcidid>0000-0002-4255-4568 ; 0000-0001-5477-2186 ; 0000-0002-1348-1072 ; 0000-0002-1605-8448 ; 0000-0001-5464-9225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31289705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geng, Guannan</creatorcontrib><creatorcontrib>Murray, Nancy L</creatorcontrib><creatorcontrib>Tong, Daniel</creatorcontrib><creatorcontrib>Fu, Joshua S</creatorcontrib><creatorcontrib>Hu, Xuefei</creatorcontrib><creatorcontrib>Lee, Pius</creatorcontrib><creatorcontrib>Meng, Xia</creatorcontrib><creatorcontrib>Chang, Howard H</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J Geophys Res Atmos</addtitle><description>The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM ) from wildfires are limited by the lack of accurate high-resolution PM exposure data over fire days. Satellite-based aerosol optical depth (AOD) data can provide additional information in ground PM concentrations and has been widely used in previous studies. However, the low background concentration, complex terrain, and large wildfire sources add to the challenge of estimating PM concentrations in the western United States. In this study, we applied a Bayesian ensemble model that combined information from the 1 km resolution AOD products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily PM concentrations over fire seasons (April to September) in Colorado for 2011-2014. Our model had a 10-fold cross-validated R of 0.66 and root-mean-squared error of 2.00 μg/m , outperformed the multistage model, especially on the fire days. Elevated PM concentrations over large fire events were successfully captured. The modeling technique demonstrated in this study could support future short-term and long-term epidemiological studies of wildfire PM .</description><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMottTuXEt-gFNzk8lrqdOODyoKVXA3pDOJRKYzJZku-u-NVIt3cy_cj8M5B6FLIDMgVN9QAuppTqjikp2gMQWhM6W1OD3e8mOEpjF-kTSKsJzn52jEgKYP4WNUrsxg29YPNrsz0TZ4bny7x6_PmM44XsTBbxIQ8XwXfPeJSx8sXlkT-y5i3-Gib_tgmv4CnTnTRjv93RP0Xi7eiods-XL_WNwusxpyYJmwcq1crZipuXGCK1JToEYbLaXThGtBk0VKOLhGQm4dA2OEZI1TuVWUsgm6PujWoY8xWFdtQ3IY9hWQ6qeR6n8jCb864NvdemObI_yXn30DBw9YYA</recordid><startdate>20180816</startdate><enddate>20180816</enddate><creator>Geng, Guannan</creator><creator>Murray, Nancy L</creator><creator>Tong, Daniel</creator><creator>Fu, Joshua S</creator><creator>Hu, Xuefei</creator><creator>Lee, Pius</creator><creator>Meng, Xia</creator><creator>Chang, Howard H</creator><creator>Liu, Yang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4255-4568</orcidid><orcidid>https://orcid.org/0000-0001-5477-2186</orcidid><orcidid>https://orcid.org/0000-0002-1348-1072</orcidid><orcidid>https://orcid.org/0000-0002-1605-8448</orcidid><orcidid>https://orcid.org/0000-0001-5464-9225</orcidid></search><sort><creationdate>20180816</creationdate><title>Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado</title><author>Geng, Guannan ; Murray, Nancy L ; Tong, Daniel ; Fu, Joshua S ; Hu, Xuefei ; Lee, Pius ; Meng, Xia ; Chang, Howard H ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1413-6e7b8fc83ac5af6580c212a9a977f9059620342051fd714ef31aa673df84e8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Guannan</creatorcontrib><creatorcontrib>Murray, Nancy L</creatorcontrib><creatorcontrib>Tong, Daniel</creatorcontrib><creatorcontrib>Fu, Joshua S</creatorcontrib><creatorcontrib>Hu, Xuefei</creatorcontrib><creatorcontrib>Lee, Pius</creatorcontrib><creatorcontrib>Meng, Xia</creatorcontrib><creatorcontrib>Chang, Howard H</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Guannan</au><au>Murray, Nancy L</au><au>Tong, Daniel</au><au>Fu, Joshua S</au><au>Hu, Xuefei</au><au>Lee, Pius</au><au>Meng, Xia</au><au>Chang, Howard H</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J Geophys Res Atmos</addtitle><date>2018-08-16</date><risdate>2018</risdate><volume>123</volume><issue>15</issue><spage>8159</spage><epage>8171</epage><pages>8159-8171</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM ) from wildfires are limited by the lack of accurate high-resolution PM exposure data over fire days. Satellite-based aerosol optical depth (AOD) data can provide additional information in ground PM concentrations and has been widely used in previous studies. However, the low background concentration, complex terrain, and large wildfire sources add to the challenge of estimating PM concentrations in the western United States. In this study, we applied a Bayesian ensemble model that combined information from the 1 km resolution AOD products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily PM concentrations over fire seasons (April to September) in Colorado for 2011-2014. Our model had a 10-fold cross-validated R of 0.66 and root-mean-squared error of 2.00 μg/m , outperformed the multistage model, especially on the fire days. Elevated PM concentrations over large fire events were successfully captured. The modeling technique demonstrated in this study could support future short-term and long-term epidemiological studies of wildfire PM .</abstract><cop>United States</cop><pmid>31289705</pmid><doi>10.1029/2018JD028573</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4255-4568</orcidid><orcidid>https://orcid.org/0000-0001-5477-2186</orcidid><orcidid>https://orcid.org/0000-0002-1348-1072</orcidid><orcidid>https://orcid.org/0000-0002-1605-8448</orcidid><orcidid>https://orcid.org/0000-0001-5464-9225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2018-08, Vol.123 (15), p.8159-8171
issn 2169-897X
2169-8996
language eng
recordid cdi_crossref_primary_10_1029_2018JD028573
source Wiley Online Library Journals; Alma/SFX Local Collection
title Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite-Based%20Daily%20PM%202.5%20Estimates%20During%20Fire%20Seasons%20in%20Colorado&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Geng,%20Guannan&rft.date=2018-08-16&rft.volume=123&rft.issue=15&rft.spage=8159&rft.epage=8171&rft.pages=8159-8171&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD028573&rft_dat=%3Cpubmed_cross%3E31289705%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31289705&rfr_iscdi=true