Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado
The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM ) from wildfires are limited by the lack of accurate high-resolution PM exposure data over fire days. Satellite-based aerosol...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2018-08, Vol.123 (15), p.8159-8171 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8171 |
---|---|
container_issue | 15 |
container_start_page | 8159 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 123 |
creator | Geng, Guannan Murray, Nancy L Tong, Daniel Fu, Joshua S Hu, Xuefei Lee, Pius Meng, Xia Chang, Howard H Liu, Yang |
description | The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM
) from wildfires are limited by the lack of accurate high-resolution PM
exposure data over fire days. Satellite-based aerosol optical depth (AOD) data can provide additional information in ground PM
concentrations and has been widely used in previous studies. However, the low background concentration, complex terrain, and large wildfire sources add to the challenge of estimating PM
concentrations in the western United States. In this study, we applied a Bayesian ensemble model that combined information from the 1 km resolution AOD products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily PM
concentrations over fire seasons (April to September) in Colorado for 2011-2014. Our model had a 10-fold cross-validated R
of 0.66 and root-mean-squared error of 2.00 μg/m
, outperformed the multistage model, especially on the fire days. Elevated PM
concentrations over large fire events were successfully captured. The modeling technique demonstrated in this study could support future short-term and long-term epidemiological studies of wildfire PM
. |
doi_str_mv | 10.1029/2018JD028573 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2018JD028573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31289705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1413-6e7b8fc83ac5af6580c212a9a977f9059620342051fd714ef31aa673df84e8223</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMottTuXEt-gFNzk8lrqdOODyoKVXA3pDOJRKYzJZku-u-NVIt3cy_cj8M5B6FLIDMgVN9QAuppTqjikp2gMQWhM6W1OD3e8mOEpjF-kTSKsJzn52jEgKYP4WNUrsxg29YPNrsz0TZ4bny7x6_PmM44XsTBbxIQ8XwXfPeJSx8sXlkT-y5i3-Gib_tgmv4CnTnTRjv93RP0Xi7eiods-XL_WNwusxpyYJmwcq1crZipuXGCK1JToEYbLaXThGtBk0VKOLhGQm4dA2OEZI1TuVWUsgm6PujWoY8xWFdtQ3IY9hWQ6qeR6n8jCb864NvdemObI_yXn30DBw9YYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado</title><source>Wiley Online Library Journals</source><source>Alma/SFX Local Collection</source><creator>Geng, Guannan ; Murray, Nancy L ; Tong, Daniel ; Fu, Joshua S ; Hu, Xuefei ; Lee, Pius ; Meng, Xia ; Chang, Howard H ; Liu, Yang</creator><creatorcontrib>Geng, Guannan ; Murray, Nancy L ; Tong, Daniel ; Fu, Joshua S ; Hu, Xuefei ; Lee, Pius ; Meng, Xia ; Chang, Howard H ; Liu, Yang</creatorcontrib><description>The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM
) from wildfires are limited by the lack of accurate high-resolution PM
exposure data over fire days. Satellite-based aerosol optical depth (AOD) data can provide additional information in ground PM
concentrations and has been widely used in previous studies. However, the low background concentration, complex terrain, and large wildfire sources add to the challenge of estimating PM
concentrations in the western United States. In this study, we applied a Bayesian ensemble model that combined information from the 1 km resolution AOD products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily PM
concentrations over fire seasons (April to September) in Colorado for 2011-2014. Our model had a 10-fold cross-validated R
of 0.66 and root-mean-squared error of 2.00 μg/m
, outperformed the multistage model, especially on the fire days. Elevated PM
concentrations over large fire events were successfully captured. The modeling technique demonstrated in this study could support future short-term and long-term epidemiological studies of wildfire PM
.</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD028573</identifier><identifier>PMID: 31289705</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of geophysical research. Atmospheres, 2018-08, Vol.123 (15), p.8159-8171</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1413-6e7b8fc83ac5af6580c212a9a977f9059620342051fd714ef31aa673df84e8223</citedby><cites>FETCH-LOGICAL-c1413-6e7b8fc83ac5af6580c212a9a977f9059620342051fd714ef31aa673df84e8223</cites><orcidid>0000-0002-4255-4568 ; 0000-0001-5477-2186 ; 0000-0002-1348-1072 ; 0000-0002-1605-8448 ; 0000-0001-5464-9225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31289705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geng, Guannan</creatorcontrib><creatorcontrib>Murray, Nancy L</creatorcontrib><creatorcontrib>Tong, Daniel</creatorcontrib><creatorcontrib>Fu, Joshua S</creatorcontrib><creatorcontrib>Hu, Xuefei</creatorcontrib><creatorcontrib>Lee, Pius</creatorcontrib><creatorcontrib>Meng, Xia</creatorcontrib><creatorcontrib>Chang, Howard H</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J Geophys Res Atmos</addtitle><description>The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM
) from wildfires are limited by the lack of accurate high-resolution PM
exposure data over fire days. Satellite-based aerosol optical depth (AOD) data can provide additional information in ground PM
concentrations and has been widely used in previous studies. However, the low background concentration, complex terrain, and large wildfire sources add to the challenge of estimating PM
concentrations in the western United States. In this study, we applied a Bayesian ensemble model that combined information from the 1 km resolution AOD products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily PM
concentrations over fire seasons (April to September) in Colorado for 2011-2014. Our model had a 10-fold cross-validated R
of 0.66 and root-mean-squared error of 2.00 μg/m
, outperformed the multistage model, especially on the fire days. Elevated PM
concentrations over large fire events were successfully captured. The modeling technique demonstrated in this study could support future short-term and long-term epidemiological studies of wildfire PM
.</description><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMottTuXEt-gFNzk8lrqdOODyoKVXA3pDOJRKYzJZku-u-NVIt3cy_cj8M5B6FLIDMgVN9QAuppTqjikp2gMQWhM6W1OD3e8mOEpjF-kTSKsJzn52jEgKYP4WNUrsxg29YPNrsz0TZ4bny7x6_PmM44XsTBbxIQ8XwXfPeJSx8sXlkT-y5i3-Gib_tgmv4CnTnTRjv93RP0Xi7eiods-XL_WNwusxpyYJmwcq1crZipuXGCK1JToEYbLaXThGtBk0VKOLhGQm4dA2OEZI1TuVWUsgm6PujWoY8xWFdtQ3IY9hWQ6qeR6n8jCb864NvdemObI_yXn30DBw9YYA</recordid><startdate>20180816</startdate><enddate>20180816</enddate><creator>Geng, Guannan</creator><creator>Murray, Nancy L</creator><creator>Tong, Daniel</creator><creator>Fu, Joshua S</creator><creator>Hu, Xuefei</creator><creator>Lee, Pius</creator><creator>Meng, Xia</creator><creator>Chang, Howard H</creator><creator>Liu, Yang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4255-4568</orcidid><orcidid>https://orcid.org/0000-0001-5477-2186</orcidid><orcidid>https://orcid.org/0000-0002-1348-1072</orcidid><orcidid>https://orcid.org/0000-0002-1605-8448</orcidid><orcidid>https://orcid.org/0000-0001-5464-9225</orcidid></search><sort><creationdate>20180816</creationdate><title>Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado</title><author>Geng, Guannan ; Murray, Nancy L ; Tong, Daniel ; Fu, Joshua S ; Hu, Xuefei ; Lee, Pius ; Meng, Xia ; Chang, Howard H ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1413-6e7b8fc83ac5af6580c212a9a977f9059620342051fd714ef31aa673df84e8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Guannan</creatorcontrib><creatorcontrib>Murray, Nancy L</creatorcontrib><creatorcontrib>Tong, Daniel</creatorcontrib><creatorcontrib>Fu, Joshua S</creatorcontrib><creatorcontrib>Hu, Xuefei</creatorcontrib><creatorcontrib>Lee, Pius</creatorcontrib><creatorcontrib>Meng, Xia</creatorcontrib><creatorcontrib>Chang, Howard H</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Guannan</au><au>Murray, Nancy L</au><au>Tong, Daniel</au><au>Fu, Joshua S</au><au>Hu, Xuefei</au><au>Lee, Pius</au><au>Meng, Xia</au><au>Chang, Howard H</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J Geophys Res Atmos</addtitle><date>2018-08-16</date><risdate>2018</risdate><volume>123</volume><issue>15</issue><spage>8159</spage><epage>8171</epage><pages>8159-8171</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The western United States has experienced increasing wildfire activities, which have negative effects on human health. Epidemiological studies on fine particulate matter (PM
) from wildfires are limited by the lack of accurate high-resolution PM
exposure data over fire days. Satellite-based aerosol optical depth (AOD) data can provide additional information in ground PM
concentrations and has been widely used in previous studies. However, the low background concentration, complex terrain, and large wildfire sources add to the challenge of estimating PM
concentrations in the western United States. In this study, we applied a Bayesian ensemble model that combined information from the 1 km resolution AOD products derived from the Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, Community Multiscale Air Quality (CMAQ) model simulations, and ground measurements to predict daily PM
concentrations over fire seasons (April to September) in Colorado for 2011-2014. Our model had a 10-fold cross-validated R
of 0.66 and root-mean-squared error of 2.00 μg/m
, outperformed the multistage model, especially on the fire days. Elevated PM
concentrations over large fire events were successfully captured. The modeling technique demonstrated in this study could support future short-term and long-term epidemiological studies of wildfire PM
.</abstract><cop>United States</cop><pmid>31289705</pmid><doi>10.1029/2018JD028573</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4255-4568</orcidid><orcidid>https://orcid.org/0000-0001-5477-2186</orcidid><orcidid>https://orcid.org/0000-0002-1348-1072</orcidid><orcidid>https://orcid.org/0000-0002-1605-8448</orcidid><orcidid>https://orcid.org/0000-0001-5464-9225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2018-08, Vol.123 (15), p.8159-8171 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_crossref_primary_10_1029_2018JD028573 |
source | Wiley Online Library Journals; Alma/SFX Local Collection |
title | Satellite-Based Daily PM 2.5 Estimates During Fire Seasons in Colorado |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite-Based%20Daily%20PM%202.5%20Estimates%20During%20Fire%20Seasons%20in%20Colorado&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Geng,%20Guannan&rft.date=2018-08-16&rft.volume=123&rft.issue=15&rft.spage=8159&rft.epage=8171&rft.pages=8159-8171&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD028573&rft_dat=%3Cpubmed_cross%3E31289705%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31289705&rfr_iscdi=true |