Have Synergies Between Nitrogen Deposition and Atmospheric CO 2 Driven the Recent Enhancement of the Terrestrial Carbon Sink?

The terrestrial carbon sink has increased since the turn of this century at a time of increased fossil fuel burning, yet the mechanisms enhancing this sink are not fully understood. Here we assess the hypothesis that regional increases in nitrogen deposition since the early 2000s has alleviated nitr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2019-02, Vol.33 (2), p.163-180
Hauptverfasser: O'Sullivan, Michael, Spracklen, Dominick V, Batterman, Sarah A, Arnold, Steve R, Gloor, Manuel, Buermann, Wolfgang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2
container_start_page 163
container_title Global biogeochemical cycles
container_volume 33
creator O'Sullivan, Michael
Spracklen, Dominick V
Batterman, Sarah A
Arnold, Steve R
Gloor, Manuel
Buermann, Wolfgang
description The terrestrial carbon sink has increased since the turn of this century at a time of increased fossil fuel burning, yet the mechanisms enhancing this sink are not fully understood. Here we assess the hypothesis that regional increases in nitrogen deposition since the early 2000s has alleviated nitrogen limitation and worked in tandem with enhanced CO fertilization to increase ecosystem productivity and carbon sequestration, providing a causal link between the parallel increases in emissions and the global land carbon sink. We use the Community Land Model (CLM4.5-BGC) to estimate the influence of changes in atmospheric CO , nitrogen deposition, climate, and their interactions to changes in net primary production and net biome production. We focus on two periods, 1901-2016 and 1990-2016, to estimate changes in land carbon fluxes relative to historical and contemporary baselines, respectively. We find that over the historical period, nitrogen deposition (14%) and carbon-nitrogen synergy (14%) were significant contributors to the current terrestrial carbon sink, suggesting that long-term increases in nitrogen deposition led to a substantial increase in CO fertilization. However, relative to the contemporary baseline, changes in nitrogen deposition and carbon-nitrogen synergy had no substantial contribution to the 21st century increase in global carbon uptake. Nonetheless, we find that increased nitrogen deposition in East Asia since the early 1990s contributed 50% to the overall increase in net biome production over this region, highlighting the importance of carbon-nitrogen interactions. Therefore, potential large-scale changes in nitrogen deposition could have a significant impact on terrestrial carbon cycling and future climate.
doi_str_mv 10.1029/2018GB005922
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2018GB005922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31007383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-ddbaa30fa64e54d5ccac1a6a43bfacb805b911542f92caedcf43c25a3f17129b3</originalsourceid><addsrcrecordid>eNpNkE9PwjAYhxujEURvnk0_gNP-29hOBgeCCZFE8Lx03Vuoso60FcPB7-4QNZ7eJ3mf_A4PQpeU3FDCsltGaDq-JyTOGDtCXZoJEbUojlGXpGkSJYwnHXTm_SshVMRxdoo6nBLS5ynvos-J3AKe7yy4pQGP7yF8AFj8ZIJrli0MYdN4E0xjsbQVHoS68ZsVOKNwPsMMD53ZtlpYAX4GBTbgkV1Jq6Dec6O_PwtwDnxwRq5xLl3Zjs2Nfbs7Rydarj1c_NweenkYLfJJNJ2NH_PBNFK0z0NUVaWUnGiZCIhFFSslFZWJFLzUUpUpicuM0lgwnTEloVJacMViyTXtU5aVvIeuD7vKNd470MXGmVq6XUFJsa9Y_K_Y6lcHffNe1lD9yb_Z-Be2ZW6G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Have Synergies Between Nitrogen Deposition and Atmospheric CO 2 Driven the Recent Enhancement of the Terrestrial Carbon Sink?</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>O'Sullivan, Michael ; Spracklen, Dominick V ; Batterman, Sarah A ; Arnold, Steve R ; Gloor, Manuel ; Buermann, Wolfgang</creator><creatorcontrib>O'Sullivan, Michael ; Spracklen, Dominick V ; Batterman, Sarah A ; Arnold, Steve R ; Gloor, Manuel ; Buermann, Wolfgang</creatorcontrib><description>The terrestrial carbon sink has increased since the turn of this century at a time of increased fossil fuel burning, yet the mechanisms enhancing this sink are not fully understood. Here we assess the hypothesis that regional increases in nitrogen deposition since the early 2000s has alleviated nitrogen limitation and worked in tandem with enhanced CO fertilization to increase ecosystem productivity and carbon sequestration, providing a causal link between the parallel increases in emissions and the global land carbon sink. We use the Community Land Model (CLM4.5-BGC) to estimate the influence of changes in atmospheric CO , nitrogen deposition, climate, and their interactions to changes in net primary production and net biome production. We focus on two periods, 1901-2016 and 1990-2016, to estimate changes in land carbon fluxes relative to historical and contemporary baselines, respectively. We find that over the historical period, nitrogen deposition (14%) and carbon-nitrogen synergy (14%) were significant contributors to the current terrestrial carbon sink, suggesting that long-term increases in nitrogen deposition led to a substantial increase in CO fertilization. However, relative to the contemporary baseline, changes in nitrogen deposition and carbon-nitrogen synergy had no substantial contribution to the 21st century increase in global carbon uptake. Nonetheless, we find that increased nitrogen deposition in East Asia since the early 1990s contributed 50% to the overall increase in net biome production over this region, highlighting the importance of carbon-nitrogen interactions. Therefore, potential large-scale changes in nitrogen deposition could have a significant impact on terrestrial carbon cycling and future climate.</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1029/2018GB005922</identifier><identifier>PMID: 31007383</identifier><language>eng</language><publisher>United States</publisher><ispartof>Global biogeochemical cycles, 2019-02, Vol.33 (2), p.163-180</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-ddbaa30fa64e54d5ccac1a6a43bfacb805b911542f92caedcf43c25a3f17129b3</citedby><cites>FETCH-LOGICAL-c173t-ddbaa30fa64e54d5ccac1a6a43bfacb805b911542f92caedcf43c25a3f17129b3</cites><orcidid>0000-0002-9384-6341 ; 0000-0002-6278-3392 ; 0000-0002-4881-5685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31007383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Sullivan, Michael</creatorcontrib><creatorcontrib>Spracklen, Dominick V</creatorcontrib><creatorcontrib>Batterman, Sarah A</creatorcontrib><creatorcontrib>Arnold, Steve R</creatorcontrib><creatorcontrib>Gloor, Manuel</creatorcontrib><creatorcontrib>Buermann, Wolfgang</creatorcontrib><title>Have Synergies Between Nitrogen Deposition and Atmospheric CO 2 Driven the Recent Enhancement of the Terrestrial Carbon Sink?</title><title>Global biogeochemical cycles</title><addtitle>Global Biogeochem Cycles</addtitle><description>The terrestrial carbon sink has increased since the turn of this century at a time of increased fossil fuel burning, yet the mechanisms enhancing this sink are not fully understood. Here we assess the hypothesis that regional increases in nitrogen deposition since the early 2000s has alleviated nitrogen limitation and worked in tandem with enhanced CO fertilization to increase ecosystem productivity and carbon sequestration, providing a causal link between the parallel increases in emissions and the global land carbon sink. We use the Community Land Model (CLM4.5-BGC) to estimate the influence of changes in atmospheric CO , nitrogen deposition, climate, and their interactions to changes in net primary production and net biome production. We focus on two periods, 1901-2016 and 1990-2016, to estimate changes in land carbon fluxes relative to historical and contemporary baselines, respectively. We find that over the historical period, nitrogen deposition (14%) and carbon-nitrogen synergy (14%) were significant contributors to the current terrestrial carbon sink, suggesting that long-term increases in nitrogen deposition led to a substantial increase in CO fertilization. However, relative to the contemporary baseline, changes in nitrogen deposition and carbon-nitrogen synergy had no substantial contribution to the 21st century increase in global carbon uptake. Nonetheless, we find that increased nitrogen deposition in East Asia since the early 1990s contributed 50% to the overall increase in net biome production over this region, highlighting the importance of carbon-nitrogen interactions. Therefore, potential large-scale changes in nitrogen deposition could have a significant impact on terrestrial carbon cycling and future climate.</description><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE9PwjAYhxujEURvnk0_gNP-29hOBgeCCZFE8Lx03Vuoso60FcPB7-4QNZ7eJ3mf_A4PQpeU3FDCsltGaDq-JyTOGDtCXZoJEbUojlGXpGkSJYwnHXTm_SshVMRxdoo6nBLS5ynvos-J3AKe7yy4pQGP7yF8AFj8ZIJrli0MYdN4E0xjsbQVHoS68ZsVOKNwPsMMD53ZtlpYAX4GBTbgkV1Jq6Dec6O_PwtwDnxwRq5xLl3Zjs2Nfbs7Rydarj1c_NweenkYLfJJNJ2NH_PBNFK0z0NUVaWUnGiZCIhFFSslFZWJFLzUUpUpicuM0lgwnTEloVJacMViyTXtU5aVvIeuD7vKNd470MXGmVq6XUFJsa9Y_K_Y6lcHffNe1lD9yb_Z-Be2ZW6G</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>O'Sullivan, Michael</creator><creator>Spracklen, Dominick V</creator><creator>Batterman, Sarah A</creator><creator>Arnold, Steve R</creator><creator>Gloor, Manuel</creator><creator>Buermann, Wolfgang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9384-6341</orcidid><orcidid>https://orcid.org/0000-0002-6278-3392</orcidid><orcidid>https://orcid.org/0000-0002-4881-5685</orcidid></search><sort><creationdate>201902</creationdate><title>Have Synergies Between Nitrogen Deposition and Atmospheric CO 2 Driven the Recent Enhancement of the Terrestrial Carbon Sink?</title><author>O'Sullivan, Michael ; Spracklen, Dominick V ; Batterman, Sarah A ; Arnold, Steve R ; Gloor, Manuel ; Buermann, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-ddbaa30fa64e54d5ccac1a6a43bfacb805b911542f92caedcf43c25a3f17129b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Sullivan, Michael</creatorcontrib><creatorcontrib>Spracklen, Dominick V</creatorcontrib><creatorcontrib>Batterman, Sarah A</creatorcontrib><creatorcontrib>Arnold, Steve R</creatorcontrib><creatorcontrib>Gloor, Manuel</creatorcontrib><creatorcontrib>Buermann, Wolfgang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Sullivan, Michael</au><au>Spracklen, Dominick V</au><au>Batterman, Sarah A</au><au>Arnold, Steve R</au><au>Gloor, Manuel</au><au>Buermann, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Have Synergies Between Nitrogen Deposition and Atmospheric CO 2 Driven the Recent Enhancement of the Terrestrial Carbon Sink?</atitle><jtitle>Global biogeochemical cycles</jtitle><addtitle>Global Biogeochem Cycles</addtitle><date>2019-02</date><risdate>2019</risdate><volume>33</volume><issue>2</issue><spage>163</spage><epage>180</epage><pages>163-180</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>The terrestrial carbon sink has increased since the turn of this century at a time of increased fossil fuel burning, yet the mechanisms enhancing this sink are not fully understood. Here we assess the hypothesis that regional increases in nitrogen deposition since the early 2000s has alleviated nitrogen limitation and worked in tandem with enhanced CO fertilization to increase ecosystem productivity and carbon sequestration, providing a causal link between the parallel increases in emissions and the global land carbon sink. We use the Community Land Model (CLM4.5-BGC) to estimate the influence of changes in atmospheric CO , nitrogen deposition, climate, and their interactions to changes in net primary production and net biome production. We focus on two periods, 1901-2016 and 1990-2016, to estimate changes in land carbon fluxes relative to historical and contemporary baselines, respectively. We find that over the historical period, nitrogen deposition (14%) and carbon-nitrogen synergy (14%) were significant contributors to the current terrestrial carbon sink, suggesting that long-term increases in nitrogen deposition led to a substantial increase in CO fertilization. However, relative to the contemporary baseline, changes in nitrogen deposition and carbon-nitrogen synergy had no substantial contribution to the 21st century increase in global carbon uptake. Nonetheless, we find that increased nitrogen deposition in East Asia since the early 1990s contributed 50% to the overall increase in net biome production over this region, highlighting the importance of carbon-nitrogen interactions. Therefore, potential large-scale changes in nitrogen deposition could have a significant impact on terrestrial carbon cycling and future climate.</abstract><cop>United States</cop><pmid>31007383</pmid><doi>10.1029/2018GB005922</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9384-6341</orcidid><orcidid>https://orcid.org/0000-0002-6278-3392</orcidid><orcidid>https://orcid.org/0000-0002-4881-5685</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2019-02, Vol.33 (2), p.163-180
issn 0886-6236
1944-9224
language eng
recordid cdi_crossref_primary_10_1029_2018GB005922
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley Online Library AGU Free Content; EZB-FREE-00999 freely available EZB journals
title Have Synergies Between Nitrogen Deposition and Atmospheric CO 2 Driven the Recent Enhancement of the Terrestrial Carbon Sink?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Have%20Synergies%20Between%20Nitrogen%20Deposition%20and%20Atmospheric%20CO%202%20Driven%20the%20Recent%20Enhancement%20of%20the%20Terrestrial%20Carbon%20Sink?&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=O'Sullivan,%20Michael&rft.date=2019-02&rft.volume=33&rft.issue=2&rft.spage=163&rft.epage=180&rft.pages=163-180&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1029/2018GB005922&rft_dat=%3Cpubmed_cross%3E31007383%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31007383&rfr_iscdi=true