Wind sheltering of a lake by a tree canopy or bluff topography

A model is developed to quantify the wind sheltering of a lake by a tree canopy or a bluff. The experiment‐based model predicts the wind‐sheltering coefficient a priori, without calibration, and is useful for one‐dimensional (1‐D) lake hydrodynamic and water quality modeling. The model is derived fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2010-03, Vol.46 (3), p.n/a
Hauptverfasser: Markfort, Corey D, Perez, Angel L.S, Thill, James W, Jaster, Dane A, Porte-Agel, Fernando, Stefan, Heinz G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Water resources research
container_volume 46
creator Markfort, Corey D
Perez, Angel L.S
Thill, James W
Jaster, Dane A
Porte-Agel, Fernando
Stefan, Heinz G
description A model is developed to quantify the wind sheltering of a lake by a tree canopy or a bluff. The experiment‐based model predicts the wind‐sheltering coefficient a priori, without calibration, and is useful for one‐dimensional (1‐D) lake hydrodynamic and water quality modeling. The model is derived from velocity measurements in a boundary layer wind tunnel, by investigating mean velocity profiles and surface shear stress development downwind of two canopies and a bluff. The wind tunnel experiments are validated with field measurements over an ice‐covered lake. Both wind tunnel and field experiments show that reduced surface shear stress extends approximately 50 canopy heights downwind from the transition. The reduction in total shear force on the water surface is parameterized by a wind‐sheltering coefficient that is related to the reduction of wind‐affected lake area. While all measurements are made on solid surfaces, the wind‐sheltering coefficient is shown to be applicable to the lake surface. Although several canopy characteristics, such as its height, aerodynamic roughness, and its porosity affect the transition of velocity profiles and surface shear stress onto a lake, a relationship based on canopy height alone provides a sufficiently realistic estimate of the wind‐sheltering coefficient. The results compare well with wind‐sheltering coefficients estimated by calibration of lake water temperature profile simulations for eight lakes.
doi_str_mv 10.1029/2009WR007759
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2009WR007759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_V6PTZSRH_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3648-25902967ba0bbab6ba666574800fcd64eb8c05a99b61b86d47188718bfe66b4c3</originalsourceid><addsrcrecordid>eNp9j1FLwzAUhYMoOKdvvpsfYPWmSZPmRZChmzBUus2CLyHpkq2uriOpaP-9HRXxyYfLvQ_fuecchM4JXBGI5XUMIPMMQIhEHqABkYxFQgp6iAYAjEaESnGMTkJ4AyAs4WKAbvJyu8RhbavG-nK7wrXDGld6Y7Fpu6vx1uJCb-tdi2uPTfXhHG7qXb3yerduT9GR01WwZz97iBb3d_PRJJo-jR9Gt9NIU87SKE5kl48Lo8EYbbjRnPNEsBTAFUvOrEkLSLSUhhOT8iUTJE27Mc5yblhBh-iy_1v4OgRvndr58l37VhFQ--7qb_cOpz3-WVa2_ZdVeTbKSNz5daqoV5WhsV-_Ku03igsqEpU_jtULf56_zrKJ2rtc9LzTtdIrXwa1mMVAKJCUxVwQ-g39YHJl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wind sheltering of a lake by a tree canopy or bluff topography</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library AGU Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Markfort, Corey D ; Perez, Angel L.S ; Thill, James W ; Jaster, Dane A ; Porte-Agel, Fernando ; Stefan, Heinz G</creator><creatorcontrib>Markfort, Corey D ; Perez, Angel L.S ; Thill, James W ; Jaster, Dane A ; Porte-Agel, Fernando ; Stefan, Heinz G</creatorcontrib><description>A model is developed to quantify the wind sheltering of a lake by a tree canopy or a bluff. The experiment‐based model predicts the wind‐sheltering coefficient a priori, without calibration, and is useful for one‐dimensional (1‐D) lake hydrodynamic and water quality modeling. The model is derived from velocity measurements in a boundary layer wind tunnel, by investigating mean velocity profiles and surface shear stress development downwind of two canopies and a bluff. The wind tunnel experiments are validated with field measurements over an ice‐covered lake. Both wind tunnel and field experiments show that reduced surface shear stress extends approximately 50 canopy heights downwind from the transition. The reduction in total shear force on the water surface is parameterized by a wind‐sheltering coefficient that is related to the reduction of wind‐affected lake area. While all measurements are made on solid surfaces, the wind‐sheltering coefficient is shown to be applicable to the lake surface. Although several canopy characteristics, such as its height, aerodynamic roughness, and its porosity affect the transition of velocity profiles and surface shear stress onto a lake, a relationship based on canopy height alone provides a sufficiently realistic estimate of the wind‐sheltering coefficient. The results compare well with wind‐sheltering coefficients estimated by calibration of lake water temperature profile simulations for eight lakes.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2009WR007759</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>aerodynamics ; atmospheric boundary layer ; calibration ; canopy ; hydrologic models ; lake modeling ; lakes ; porosity ; roughness ; shear stress ; simulation ; simulation models ; surface mixed layer ; trees ; water quality ; water temperature ; wind ; wind mixing</subject><ispartof>Water resources research, 2010-03, Vol.46 (3), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3648-25902967ba0bbab6ba666574800fcd64eb8c05a99b61b86d47188718bfe66b4c3</citedby><cites>FETCH-LOGICAL-a3648-25902967ba0bbab6ba666574800fcd64eb8c05a99b61b86d47188718bfe66b4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009WR007759$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009WR007759$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Markfort, Corey D</creatorcontrib><creatorcontrib>Perez, Angel L.S</creatorcontrib><creatorcontrib>Thill, James W</creatorcontrib><creatorcontrib>Jaster, Dane A</creatorcontrib><creatorcontrib>Porte-Agel, Fernando</creatorcontrib><creatorcontrib>Stefan, Heinz G</creatorcontrib><title>Wind sheltering of a lake by a tree canopy or bluff topography</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>A model is developed to quantify the wind sheltering of a lake by a tree canopy or a bluff. The experiment‐based model predicts the wind‐sheltering coefficient a priori, without calibration, and is useful for one‐dimensional (1‐D) lake hydrodynamic and water quality modeling. The model is derived from velocity measurements in a boundary layer wind tunnel, by investigating mean velocity profiles and surface shear stress development downwind of two canopies and a bluff. The wind tunnel experiments are validated with field measurements over an ice‐covered lake. Both wind tunnel and field experiments show that reduced surface shear stress extends approximately 50 canopy heights downwind from the transition. The reduction in total shear force on the water surface is parameterized by a wind‐sheltering coefficient that is related to the reduction of wind‐affected lake area. While all measurements are made on solid surfaces, the wind‐sheltering coefficient is shown to be applicable to the lake surface. Although several canopy characteristics, such as its height, aerodynamic roughness, and its porosity affect the transition of velocity profiles and surface shear stress onto a lake, a relationship based on canopy height alone provides a sufficiently realistic estimate of the wind‐sheltering coefficient. The results compare well with wind‐sheltering coefficients estimated by calibration of lake water temperature profile simulations for eight lakes.</description><subject>aerodynamics</subject><subject>atmospheric boundary layer</subject><subject>calibration</subject><subject>canopy</subject><subject>hydrologic models</subject><subject>lake modeling</subject><subject>lakes</subject><subject>porosity</subject><subject>roughness</subject><subject>shear stress</subject><subject>simulation</subject><subject>simulation models</subject><subject>surface mixed layer</subject><subject>trees</subject><subject>water quality</subject><subject>water temperature</subject><subject>wind</subject><subject>wind mixing</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9j1FLwzAUhYMoOKdvvpsfYPWmSZPmRZChmzBUus2CLyHpkq2uriOpaP-9HRXxyYfLvQ_fuecchM4JXBGI5XUMIPMMQIhEHqABkYxFQgp6iAYAjEaESnGMTkJ4AyAs4WKAbvJyu8RhbavG-nK7wrXDGld6Y7Fpu6vx1uJCb-tdi2uPTfXhHG7qXb3yerduT9GR01WwZz97iBb3d_PRJJo-jR9Gt9NIU87SKE5kl48Lo8EYbbjRnPNEsBTAFUvOrEkLSLSUhhOT8iUTJE27Mc5yblhBh-iy_1v4OgRvndr58l37VhFQ--7qb_cOpz3-WVa2_ZdVeTbKSNz5daqoV5WhsV-_Ku03igsqEpU_jtULf56_zrKJ2rtc9LzTtdIrXwa1mMVAKJCUxVwQ-g39YHJl</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Markfort, Corey D</creator><creator>Perez, Angel L.S</creator><creator>Thill, James W</creator><creator>Jaster, Dane A</creator><creator>Porte-Agel, Fernando</creator><creator>Stefan, Heinz G</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201003</creationdate><title>Wind sheltering of a lake by a tree canopy or bluff topography</title><author>Markfort, Corey D ; Perez, Angel L.S ; Thill, James W ; Jaster, Dane A ; Porte-Agel, Fernando ; Stefan, Heinz G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3648-25902967ba0bbab6ba666574800fcd64eb8c05a99b61b86d47188718bfe66b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>aerodynamics</topic><topic>atmospheric boundary layer</topic><topic>calibration</topic><topic>canopy</topic><topic>hydrologic models</topic><topic>lake modeling</topic><topic>lakes</topic><topic>porosity</topic><topic>roughness</topic><topic>shear stress</topic><topic>simulation</topic><topic>simulation models</topic><topic>surface mixed layer</topic><topic>trees</topic><topic>water quality</topic><topic>water temperature</topic><topic>wind</topic><topic>wind mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markfort, Corey D</creatorcontrib><creatorcontrib>Perez, Angel L.S</creatorcontrib><creatorcontrib>Thill, James W</creatorcontrib><creatorcontrib>Jaster, Dane A</creatorcontrib><creatorcontrib>Porte-Agel, Fernando</creatorcontrib><creatorcontrib>Stefan, Heinz G</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markfort, Corey D</au><au>Perez, Angel L.S</au><au>Thill, James W</au><au>Jaster, Dane A</au><au>Porte-Agel, Fernando</au><au>Stefan, Heinz G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind sheltering of a lake by a tree canopy or bluff topography</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2010-03</date><risdate>2010</risdate><volume>46</volume><issue>3</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>A model is developed to quantify the wind sheltering of a lake by a tree canopy or a bluff. The experiment‐based model predicts the wind‐sheltering coefficient a priori, without calibration, and is useful for one‐dimensional (1‐D) lake hydrodynamic and water quality modeling. The model is derived from velocity measurements in a boundary layer wind tunnel, by investigating mean velocity profiles and surface shear stress development downwind of two canopies and a bluff. The wind tunnel experiments are validated with field measurements over an ice‐covered lake. Both wind tunnel and field experiments show that reduced surface shear stress extends approximately 50 canopy heights downwind from the transition. The reduction in total shear force on the water surface is parameterized by a wind‐sheltering coefficient that is related to the reduction of wind‐affected lake area. While all measurements are made on solid surfaces, the wind‐sheltering coefficient is shown to be applicable to the lake surface. Although several canopy characteristics, such as its height, aerodynamic roughness, and its porosity affect the transition of velocity profiles and surface shear stress onto a lake, a relationship based on canopy height alone provides a sufficiently realistic estimate of the wind‐sheltering coefficient. The results compare well with wind‐sheltering coefficients estimated by calibration of lake water temperature profile simulations for eight lakes.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009WR007759</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2010-03, Vol.46 (3), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_crossref_primary_10_1029_2009WR007759
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library AGU Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects aerodynamics
atmospheric boundary layer
calibration
canopy
hydrologic models
lake modeling
lakes
porosity
roughness
shear stress
simulation
simulation models
surface mixed layer
trees
water quality
water temperature
wind
wind mixing
title Wind sheltering of a lake by a tree canopy or bluff topography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20sheltering%20of%20a%20lake%20by%20a%20tree%20canopy%20or%20bluff%20topography&rft.jtitle=Water%20resources%20research&rft.au=Markfort,%20Corey%20D&rft.date=2010-03&rft.volume=46&rft.issue=3&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2009WR007759&rft_dat=%3Cistex_cross%3Eark_67375_WNG_V6PTZSRH_9%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true