Poisson's ratios of crystalline rocks as a function of hydrostatic confining pressure
The hydrostatic pressure (P) dependence of dynamic Poisson's ratios (υ) has been investigated for 54 samples of the crystalline rocks from the Sulu‐Dabie orogenic belt (China) using pulse transmission techniques. The Poisson's ratio of each sample was calculated from its mean P and S wave...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Solid Earth 2009-09, Vol.114 (B9), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | B9 |
container_start_page | |
container_title | Journal of Geophysical Research: Solid Earth |
container_volume | 114 |
creator | Wang, Qian Ji, Shaocheng |
description | The hydrostatic pressure (P) dependence of dynamic Poisson's ratios (υ) has been investigated for 54 samples of the crystalline rocks from the Sulu‐Dabie orogenic belt (China) using pulse transmission techniques. The Poisson's ratio of each sample was calculated from its mean P and S wave velocities from three orthogonal directions corresponding to the tectonic framework (X‐Y‐Z) defined by foliation and lineation. The experimental results display two typical categories of υ – P relationship in the range of 40–800 MPa: (1) with increasing pressure, υ increases rapidly below ∼200 MPa and then becomes quasi‐constant at higher pressures, and (2) υ shows little variation with P. Types 1 and 2 are observed in 32 and 22 samples, respectively. The origin of type 1 can be reasonably interpreted by a small volume fraction (0.1–0.5%) of randomly distributed and randomly oriented thin disk‐shaped microcracks that are progressively closed during pressurization. Type 2 is originated from the combined effects of microcrack orientation, crystallographic preferred orientations, and compositional layering. The present study confirms that the crystalline rocks at pressures above ∼200 MPa show no significant changes in Poisson's ratio with increasing pressure. Below 200 MPa, however, both modal composition and confining pressure play a critical role in influencing the Poisson's ratio. |
doi_str_mv | 10.1029/2008JB006167 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2008JB006167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRB16022</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4742-68a0b6698bf4872bbc419695b34f4ffbc61ebb34f0588b79b76580821f65f5d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGpv_oC9iBdXk2w2yR5tsa21qEjVY0jSjcau2ZJs0f33ZlkpnhwGhoHvvRkeAKcIXiKIiysMIV-MIaSIsgMwwCinKcYQH4IBRISnEGN2DEYhfMBYJKcEogF4fqxtCLU7D4mXja1DUptE-zY0sqqsKxNf601IZOzE7JyOiOuQ93bt6wg1Vie6dsY6696SrS9D2PnyBBwZWYVy9DuHYDW9WU3m6fJhdju5XqaSMIJTyiVUlBZcGcIZVkoTVNAiVxkxxBilKSpVt8Ccc8UKxWjOIcfI0Nzk62wILnpbHX8JvjRi6-2n9K1AUHShiL-hRPysx7cyaFkZL522Ya_BGGUxlY7Leu7LVmX7r6dYzJ7GiMZsoyrtVTY05fdeJf1GxNssF6_3M8Gy8bR4mS_EXfYD8aB_IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Poisson's ratios of crystalline rocks as a function of hydrostatic confining pressure</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Qian ; Ji, Shaocheng</creator><creatorcontrib>Wang, Qian ; Ji, Shaocheng</creatorcontrib><description>The hydrostatic pressure (P) dependence of dynamic Poisson's ratios (υ) has been investigated for 54 samples of the crystalline rocks from the Sulu‐Dabie orogenic belt (China) using pulse transmission techniques. The Poisson's ratio of each sample was calculated from its mean P and S wave velocities from three orthogonal directions corresponding to the tectonic framework (X‐Y‐Z) defined by foliation and lineation. The experimental results display two typical categories of υ – P relationship in the range of 40–800 MPa: (1) with increasing pressure, υ increases rapidly below ∼200 MPa and then becomes quasi‐constant at higher pressures, and (2) υ shows little variation with P. Types 1 and 2 are observed in 32 and 22 samples, respectively. The origin of type 1 can be reasonably interpreted by a small volume fraction (0.1–0.5%) of randomly distributed and randomly oriented thin disk‐shaped microcracks that are progressively closed during pressurization. Type 2 is originated from the combined effects of microcrack orientation, crystallographic preferred orientations, and compositional layering. The present study confirms that the crystalline rocks at pressures above ∼200 MPa show no significant changes in Poisson's ratio with increasing pressure. Below 200 MPa, however, both modal composition and confining pressure play a critical role in influencing the Poisson's ratio.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2008JB006167</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>crystalline rocks ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; hydrostatic pressure ; Poisson's ratio</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2009-09, Vol.114 (B9), p.n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4742-68a0b6698bf4872bbc419695b34f4ffbc61ebb34f0588b79b76580821f65f5d3</citedby><cites>FETCH-LOGICAL-a4742-68a0b6698bf4872bbc419695b34f4ffbc61ebb34f0588b79b76580821f65f5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JB006167$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JB006167$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22135647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Ji, Shaocheng</creatorcontrib><title>Poisson's ratios of crystalline rocks as a function of hydrostatic confining pressure</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>The hydrostatic pressure (P) dependence of dynamic Poisson's ratios (υ) has been investigated for 54 samples of the crystalline rocks from the Sulu‐Dabie orogenic belt (China) using pulse transmission techniques. The Poisson's ratio of each sample was calculated from its mean P and S wave velocities from three orthogonal directions corresponding to the tectonic framework (X‐Y‐Z) defined by foliation and lineation. The experimental results display two typical categories of υ – P relationship in the range of 40–800 MPa: (1) with increasing pressure, υ increases rapidly below ∼200 MPa and then becomes quasi‐constant at higher pressures, and (2) υ shows little variation with P. Types 1 and 2 are observed in 32 and 22 samples, respectively. The origin of type 1 can be reasonably interpreted by a small volume fraction (0.1–0.5%) of randomly distributed and randomly oriented thin disk‐shaped microcracks that are progressively closed during pressurization. Type 2 is originated from the combined effects of microcrack orientation, crystallographic preferred orientations, and compositional layering. The present study confirms that the crystalline rocks at pressures above ∼200 MPa show no significant changes in Poisson's ratio with increasing pressure. Below 200 MPa, however, both modal composition and confining pressure play a critical role in influencing the Poisson's ratio.</description><subject>crystalline rocks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>hydrostatic pressure</subject><subject>Poisson's ratio</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGpv_oC9iBdXk2w2yR5tsa21qEjVY0jSjcau2ZJs0f33ZlkpnhwGhoHvvRkeAKcIXiKIiysMIV-MIaSIsgMwwCinKcYQH4IBRISnEGN2DEYhfMBYJKcEogF4fqxtCLU7D4mXja1DUptE-zY0sqqsKxNf601IZOzE7JyOiOuQ93bt6wg1Vie6dsY6696SrS9D2PnyBBwZWYVy9DuHYDW9WU3m6fJhdju5XqaSMIJTyiVUlBZcGcIZVkoTVNAiVxkxxBilKSpVt8Ccc8UKxWjOIcfI0Nzk62wILnpbHX8JvjRi6-2n9K1AUHShiL-hRPysx7cyaFkZL522Ya_BGGUxlY7Leu7LVmX7r6dYzJ7GiMZsoyrtVTY05fdeJf1GxNssF6_3M8Gy8bR4mS_EXfYD8aB_IA</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Wang, Qian</creator><creator>Ji, Shaocheng</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200909</creationdate><title>Poisson's ratios of crystalline rocks as a function of hydrostatic confining pressure</title><author>Wang, Qian ; Ji, Shaocheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4742-68a0b6698bf4872bbc419695b34f4ffbc61ebb34f0588b79b76580821f65f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>crystalline rocks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>hydrostatic pressure</topic><topic>Poisson's ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Ji, Shaocheng</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qian</au><au>Ji, Shaocheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poisson's ratios of crystalline rocks as a function of hydrostatic confining pressure</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2009-09</date><risdate>2009</risdate><volume>114</volume><issue>B9</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>The hydrostatic pressure (P) dependence of dynamic Poisson's ratios (υ) has been investigated for 54 samples of the crystalline rocks from the Sulu‐Dabie orogenic belt (China) using pulse transmission techniques. The Poisson's ratio of each sample was calculated from its mean P and S wave velocities from three orthogonal directions corresponding to the tectonic framework (X‐Y‐Z) defined by foliation and lineation. The experimental results display two typical categories of υ – P relationship in the range of 40–800 MPa: (1) with increasing pressure, υ increases rapidly below ∼200 MPa and then becomes quasi‐constant at higher pressures, and (2) υ shows little variation with P. Types 1 and 2 are observed in 32 and 22 samples, respectively. The origin of type 1 can be reasonably interpreted by a small volume fraction (0.1–0.5%) of randomly distributed and randomly oriented thin disk‐shaped microcracks that are progressively closed during pressurization. Type 2 is originated from the combined effects of microcrack orientation, crystallographic preferred orientations, and compositional layering. The present study confirms that the crystalline rocks at pressures above ∼200 MPa show no significant changes in Poisson's ratio with increasing pressure. Below 200 MPa, however, both modal composition and confining pressure play a critical role in influencing the Poisson's ratio.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JB006167</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Solid Earth, 2009-09, Vol.114 (B9), p.n/a |
issn | 0148-0227 2156-2202 |
language | eng |
recordid | cdi_crossref_primary_10_1029_2008JB006167 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | crystalline rocks Earth sciences Earth, ocean, space Exact sciences and technology hydrostatic pressure Poisson's ratio |
title | Poisson's ratios of crystalline rocks as a function of hydrostatic confining pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poisson's%20ratios%20of%20crystalline%20rocks%20as%20a%20function%20of%20hydrostatic%20confining%20pressure&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Wang,%20Qian&rft.date=2009-09&rft.volume=114&rft.issue=B9&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JB006167&rft_dat=%3Cwiley_cross%3EJGRB16022%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |