Frictional melt and seismic slip

Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Solid Earth 2008-01, Vol.113 (B1), p.n/a
Hauptverfasser: Nielsen, S., Di Toro, G., Hirose, T., Shimamoto, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B1
container_start_page
container_title Journal of Geophysical Research: Solid Earth
container_volume 113
creator Nielsen, S.
Di Toro, G.
Hirose, T.
Shimamoto, T.
description Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low‐viscosity, high‐temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form τss = σn1/4 (A/) under a normal stress σn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of high‐velocity rotary shear experiments on rocks, performed for σn in the range 1–20 MPa and slip rates in the range 0.5–2 m s−1, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with σn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.
doi_str_mv 10.1029/2007JB005122
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2007JB005122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRB15384</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5174-6aa78ef3796202eff78a10105833048bfe268a740f2e0281c7f11a2558e597783</originalsourceid><addsrcrecordid>eNp9j01LAzEQhoMoWGpv_oC9eHN1ZpJsskdb7GqtCkXxGMY1gej2g01B--9dWSmenMt7eZ53eIU4RbhAoPKSAMxsDKCR6EAMCHWREwEdigGgsjkQmWMxSukdulO6UIADkU3bWG_jesVNtvTNNuPVW5Z8TMtYZ6mJmxNxFLhJfvSbQ_E8vX6a3OTzx-p2cjXPWaNRecFsrA_SlEX304dgLCMgaCslKPsaPBWWjYJAHshibQIik9bW69IYK4fivO-t23VKrQ9u08YltzuH4H4Gur8DO_ysxzecam5Cy6s6pr1D3WQoDXSc7LnP2Pjdv51uVi3GqKVVnZX3Vkxb_7W3uP1whZFGu5eHyt1Xdwuwaubm8hsP3Wnd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frictional melt and seismic slip</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Nielsen, S. ; Di Toro, G. ; Hirose, T. ; Shimamoto, T.</creator><creatorcontrib>Nielsen, S. ; Di Toro, G. ; Hirose, T. ; Shimamoto, T.</creatorcontrib><description>Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low‐viscosity, high‐temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form τss = σn1/4 (A/) under a normal stress σn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of high‐velocity rotary shear experiments on rocks, performed for σn in the range 1–20 MPa and slip rates in the range 0.5–2 m s−1, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with σn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2007JB005122</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Earthquakes, seismology ; Exact sciences and technology ; fault mechanics ; friction ; Internal geophysics ; rock experiments</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2008-01, Vol.113 (B1), p.n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5174-6aa78ef3796202eff78a10105833048bfe268a740f2e0281c7f11a2558e597783</citedby><cites>FETCH-LOGICAL-a5174-6aa78ef3796202eff78a10105833048bfe268a740f2e0281c7f11a2558e597783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007JB005122$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007JB005122$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20140970$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nielsen, S.</creatorcontrib><creatorcontrib>Di Toro, G.</creatorcontrib><creatorcontrib>Hirose, T.</creatorcontrib><creatorcontrib>Shimamoto, T.</creatorcontrib><title>Frictional melt and seismic slip</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low‐viscosity, high‐temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form τss = σn1/4 (A/) under a normal stress σn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of high‐velocity rotary shear experiments on rocks, performed for σn in the range 1–20 MPa and slip rates in the range 0.5–2 m s−1, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with σn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Exact sciences and technology</subject><subject>fault mechanics</subject><subject>friction</subject><subject>Internal geophysics</subject><subject>rock experiments</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEQhoMoWGpv_oC9eHN1ZpJsskdb7GqtCkXxGMY1gej2g01B--9dWSmenMt7eZ53eIU4RbhAoPKSAMxsDKCR6EAMCHWREwEdigGgsjkQmWMxSukdulO6UIADkU3bWG_jesVNtvTNNuPVW5Z8TMtYZ6mJmxNxFLhJfvSbQ_E8vX6a3OTzx-p2cjXPWaNRecFsrA_SlEX304dgLCMgaCslKPsaPBWWjYJAHshibQIik9bW69IYK4fivO-t23VKrQ9u08YltzuH4H4Gur8DO_ysxzecam5Cy6s6pr1D3WQoDXSc7LnP2Pjdv51uVi3GqKVVnZX3Vkxb_7W3uP1whZFGu5eHyt1Xdwuwaubm8hsP3Wnd</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Nielsen, S.</creator><creator>Di Toro, G.</creator><creator>Hirose, T.</creator><creator>Shimamoto, T.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200801</creationdate><title>Frictional melt and seismic slip</title><author>Nielsen, S. ; Di Toro, G. ; Hirose, T. ; Shimamoto, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5174-6aa78ef3796202eff78a10105833048bfe268a740f2e0281c7f11a2558e597783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Exact sciences and technology</topic><topic>fault mechanics</topic><topic>friction</topic><topic>Internal geophysics</topic><topic>rock experiments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, S.</creatorcontrib><creatorcontrib>Di Toro, G.</creatorcontrib><creatorcontrib>Hirose, T.</creatorcontrib><creatorcontrib>Shimamoto, T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nielsen, S.</au><au>Di Toro, G.</au><au>Hirose, T.</au><au>Shimamoto, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frictional melt and seismic slip</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2008-01</date><risdate>2008</risdate><volume>113</volume><issue>B1</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low‐viscosity, high‐temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form τss = σn1/4 (A/) under a normal stress σn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of high‐velocity rotary shear experiments on rocks, performed for σn in the range 1–20 MPa and slip rates in the range 0.5–2 m s−1, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with σn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007JB005122</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Solid Earth, 2008-01, Vol.113 (B1), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_crossref_primary_10_1029_2007JB005122
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Earth sciences
Earth, ocean, space
Earthquakes, seismology
Exact sciences and technology
fault mechanics
friction
Internal geophysics
rock experiments
title Frictional melt and seismic slip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frictional%20melt%20and%20seismic%20slip&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Nielsen,%20S.&rft.date=2008-01&rft.volume=113&rft.issue=B1&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2007JB005122&rft_dat=%3Cwiley_cross%3EJGRB15384%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true