Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach

A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2005-07, Vol.41 (7), p.n/a
Hauptverfasser: Qian, S.S, Reckhow, K.H, Zhai, J, McMahon, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Water resources research
container_volume 41
creator Qian, S.S
Reckhow, K.H
Zhai, J
McMahon, G
description A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed.
doi_str_mv 10.1029/2005WR003986
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2005WR003986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WRCR10329</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4029-d939e2bb55518fd1d130ace19edf5945067462a817089f94030a33c0de46aa903</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKdvvpsPYPXSJE3j2yw6hbHBdPQx3Np0Rrt2JBXdt7dSEZ98Orj7_Y67PyHnDK4YxPo6BpD5EoDrNDkgI6aFiJRW_JCMAASPGNfqmJyE8ArAhEzUiCzmbVO7xqKn3m68DcG1Dd22pe27G9pWtHnvvLNNR-sWy0BdQ0PnLW7DDZ3QW9zb4LChuNv5FouXU3JUYR3s2U8dk9X93XP2EM0W08dsMotQ9JdGpebaxuu1lJKlVclKxgELy7QtK6mFhESJJMaUKUh1pQX0Y84LKK1IEDXwMbkc9ha-DcHbyuy826LfGwbmOwzzN4we5wP-4Wq7_5c1-TJbMuCx7q1osFzo7Oevhf7NJIorafL51HAteZbkMyN6_mLgK2wNbrwLZvUUQ_8bAyGZ0PwLF3x4TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach</title><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Qian, S.S ; Reckhow, K.H ; Zhai, J ; McMahon, G</creator><creatorcontrib>Qian, S.S ; Reckhow, K.H ; Zhai, J ; McMahon, G</creatorcontrib><description>A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2005WR003986</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Bayesian statistics ; Bayesian theory ; eutrophication ; hydrologic models ; hydrology ; land use ; least squares ; MCMC ; pollution load ; rivers ; SPARROW ; surface water ; water quality ; watershed modeling</subject><ispartof>Water resources research, 2005-07, Vol.41 (7), p.n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4029-d939e2bb55518fd1d130ace19edf5945067462a817089f94030a33c0de46aa903</citedby><cites>FETCH-LOGICAL-a4029-d939e2bb55518fd1d130ace19edf5945067462a817089f94030a33c0de46aa903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005WR003986$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005WR003986$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,11513,27923,27924,45573,45574,46467,46891</link.rule.ids></links><search><creatorcontrib>Qian, S.S</creatorcontrib><creatorcontrib>Reckhow, K.H</creatorcontrib><creatorcontrib>Zhai, J</creatorcontrib><creatorcontrib>McMahon, G</creatorcontrib><title>Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed.</description><subject>Bayesian statistics</subject><subject>Bayesian theory</subject><subject>eutrophication</subject><subject>hydrologic models</subject><subject>hydrology</subject><subject>land use</subject><subject>least squares</subject><subject>MCMC</subject><subject>pollution load</subject><subject>rivers</subject><subject>SPARROW</subject><subject>surface water</subject><subject>water quality</subject><subject>watershed modeling</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOKdvvpsPYPXSJE3j2yw6hbHBdPQx3Np0Rrt2JBXdt7dSEZ98Orj7_Y67PyHnDK4YxPo6BpD5EoDrNDkgI6aFiJRW_JCMAASPGNfqmJyE8ArAhEzUiCzmbVO7xqKn3m68DcG1Dd22pe27G9pWtHnvvLNNR-sWy0BdQ0PnLW7DDZ3QW9zb4LChuNv5FouXU3JUYR3s2U8dk9X93XP2EM0W08dsMotQ9JdGpebaxuu1lJKlVclKxgELy7QtK6mFhESJJMaUKUh1pQX0Y84LKK1IEDXwMbkc9ha-DcHbyuy826LfGwbmOwzzN4we5wP-4Wq7_5c1-TJbMuCx7q1osFzo7Oevhf7NJIorafL51HAteZbkMyN6_mLgK2wNbrwLZvUUQ_8bAyGZ0PwLF3x4TQ</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Qian, S.S</creator><creator>Reckhow, K.H</creator><creator>Zhai, J</creator><creator>McMahon, G</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200507</creationdate><title>Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach</title><author>Qian, S.S ; Reckhow, K.H ; Zhai, J ; McMahon, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4029-d939e2bb55518fd1d130ace19edf5945067462a817089f94030a33c0de46aa903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bayesian statistics</topic><topic>Bayesian theory</topic><topic>eutrophication</topic><topic>hydrologic models</topic><topic>hydrology</topic><topic>land use</topic><topic>least squares</topic><topic>MCMC</topic><topic>pollution load</topic><topic>rivers</topic><topic>SPARROW</topic><topic>surface water</topic><topic>water quality</topic><topic>watershed modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, S.S</creatorcontrib><creatorcontrib>Reckhow, K.H</creatorcontrib><creatorcontrib>Zhai, J</creatorcontrib><creatorcontrib>McMahon, G</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, S.S</au><au>Reckhow, K.H</au><au>Zhai, J</au><au>McMahon, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2005-07</date><risdate>2005</risdate><volume>41</volume><issue>7</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005WR003986</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2005-07, Vol.41 (7), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_crossref_primary_10_1029_2005WR003986
source Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Bayesian statistics
Bayesian theory
eutrophication
hydrologic models
hydrology
land use
least squares
MCMC
pollution load
rivers
SPARROW
surface water
water quality
watershed modeling
title Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20regression%20modeling%20of%20nutrient%20loads%20in%20streams:%20A%20Bayesian%20approach&rft.jtitle=Water%20resources%20research&rft.au=Qian,%20S.S&rft.date=2005-07&rft.volume=41&rft.issue=7&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2005WR003986&rft_dat=%3Cwiley_cross%3EWRCR10329%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true