Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization
The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduct...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Biogeosciences 2006-03, Vol.111 (G1), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | G1 |
container_start_page | |
container_title | Journal of Geophysical Research: Biogeosciences |
container_volume | 111 |
creator | Weston, Nathaniel B. Dixon, Ray E. Joye, Samantha B. |
description | The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduction (18%), denitrification (10%), and iron reduction (10%). Upon salinity intrusion, nutrient (ammonium, silicate, phosphate) concentrations increased and rates of methanogenesis declined. Iron‐oxide bioavailability increased and microbial iron reduction appeared to account for >60% of organic matter oxidation for several days after salinity intrusion. However, sulfate reduction was the dominant pathway (>50%) of organic matter oxidation within 2 weeks of salinity intrusion, and accounted for >95% of total organic matter mineralization after 4 weeks. Total in situ sediment organic matter mineralization doubled following salinity intrusion. Increased nutrient release, decreased methanogenesis and a rapid shift to sulfate reduction, with a coincident increase overall organic matter mineralization, accompanied salinity intrusion into previously freshwater riverine sediments. |
doi_str_mv | 10.1029/2005JG000071 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2005JG000071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRG38</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4718-ed4aa61b55f1cfdb52aee88500b32ef134f9d10d17a201b46479fe5ca81ba58b3</originalsourceid><addsrcrecordid>eNp9kM1O3DAURi0EEiOYXR_Am-4asJ04Tti1o5KC0CCNQNOddeNcF9P8jOxIkL4Ar10PQaUr7sbS1TnftT5CPnF2xpkozwVj8rpicRQ_IAvBZZ4IwcQhWTCeFQkTQh2TZQiPeyaTecb4grxsoHPWGRjd0Ac6WOp64xECNjRA63o3TnFFR9dAS63H8PAEI3oaAddhP4YLWuFgHrBzYfQThb6hnTN-qF0UdjBGfnoNHvwv6J2hHYz7gM716OOFP6-nT8mRhTbg8u09IfeX3-9WP5Kb2-pq9fUmgUzxIsEmA8h5LaXlxja1FIBYFJKxOhVoeZrZsuGs4QoE43WWZ6q0KA0UvAZZ1OkJ-TLnxh-G4NHqnXcd-Elzpvc96v97jPjnGd9BMNBaD71x4d1RSqi8LCPHZu7JtTh9mKmvq02VFlFJZiX2hs__FPC_da5SJfV2XWm2_vZzLbZCq_QvYkWTGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Weston, Nathaniel B. ; Dixon, Ray E. ; Joye, Samantha B.</creator><creatorcontrib>Weston, Nathaniel B. ; Dixon, Ray E. ; Joye, Samantha B.</creatorcontrib><description>The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduction (18%), denitrification (10%), and iron reduction (10%). Upon salinity intrusion, nutrient (ammonium, silicate, phosphate) concentrations increased and rates of methanogenesis declined. Iron‐oxide bioavailability increased and microbial iron reduction appeared to account for >60% of organic matter oxidation for several days after salinity intrusion. However, sulfate reduction was the dominant pathway (>50%) of organic matter oxidation within 2 weeks of salinity intrusion, and accounted for >95% of total organic matter mineralization after 4 weeks. Total in situ sediment organic matter mineralization doubled following salinity intrusion. Increased nutrient release, decreased methanogenesis and a rapid shift to sulfate reduction, with a coincident increase overall organic matter mineralization, accompanied salinity intrusion into previously freshwater riverine sediments.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2005JG000071</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>carbon cycling ; denitrification ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; iron reduction ; methanogenesis ; salinity intrusion ; sulfate reduction</subject><ispartof>Journal of Geophysical Research: Biogeosciences, 2006-03, Vol.111 (G1), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4718-ed4aa61b55f1cfdb52aee88500b32ef134f9d10d17a201b46479fe5ca81ba58b3</citedby><cites>FETCH-LOGICAL-a4718-ed4aa61b55f1cfdb52aee88500b32ef134f9d10d17a201b46479fe5ca81ba58b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JG000071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JG000071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17727699$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weston, Nathaniel B.</creatorcontrib><creatorcontrib>Dixon, Ray E.</creatorcontrib><creatorcontrib>Joye, Samantha B.</creatorcontrib><title>Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization</title><title>Journal of Geophysical Research: Biogeosciences</title><addtitle>J. Geophys. Res</addtitle><description>The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduction (18%), denitrification (10%), and iron reduction (10%). Upon salinity intrusion, nutrient (ammonium, silicate, phosphate) concentrations increased and rates of methanogenesis declined. Iron‐oxide bioavailability increased and microbial iron reduction appeared to account for >60% of organic matter oxidation for several days after salinity intrusion. However, sulfate reduction was the dominant pathway (>50%) of organic matter oxidation within 2 weeks of salinity intrusion, and accounted for >95% of total organic matter mineralization after 4 weeks. Total in situ sediment organic matter mineralization doubled following salinity intrusion. Increased nutrient release, decreased methanogenesis and a rapid shift to sulfate reduction, with a coincident increase overall organic matter mineralization, accompanied salinity intrusion into previously freshwater riverine sediments.</description><subject>carbon cycling</subject><subject>denitrification</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>iron reduction</subject><subject>methanogenesis</subject><subject>salinity intrusion</subject><subject>sulfate reduction</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O3DAURi0EEiOYXR_Am-4asJ04Tti1o5KC0CCNQNOddeNcF9P8jOxIkL4Ar10PQaUr7sbS1TnftT5CPnF2xpkozwVj8rpicRQ_IAvBZZ4IwcQhWTCeFQkTQh2TZQiPeyaTecb4grxsoHPWGRjd0Ac6WOp64xECNjRA63o3TnFFR9dAS63H8PAEI3oaAddhP4YLWuFgHrBzYfQThb6hnTN-qF0UdjBGfnoNHvwv6J2hHYz7gM716OOFP6-nT8mRhTbg8u09IfeX3-9WP5Kb2-pq9fUmgUzxIsEmA8h5LaXlxja1FIBYFJKxOhVoeZrZsuGs4QoE43WWZ6q0KA0UvAZZ1OkJ-TLnxh-G4NHqnXcd-Elzpvc96v97jPjnGd9BMNBaD71x4d1RSqi8LCPHZu7JtTh9mKmvq02VFlFJZiX2hs__FPC_da5SJfV2XWm2_vZzLbZCq_QvYkWTGA</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Weston, Nathaniel B.</creator><creator>Dixon, Ray E.</creator><creator>Joye, Samantha B.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200603</creationdate><title>Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization</title><author>Weston, Nathaniel B. ; Dixon, Ray E. ; Joye, Samantha B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4718-ed4aa61b55f1cfdb52aee88500b32ef134f9d10d17a201b46479fe5ca81ba58b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>carbon cycling</topic><topic>denitrification</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>iron reduction</topic><topic>methanogenesis</topic><topic>salinity intrusion</topic><topic>sulfate reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weston, Nathaniel B.</creatorcontrib><creatorcontrib>Dixon, Ray E.</creatorcontrib><creatorcontrib>Joye, Samantha B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weston, Nathaniel B.</au><au>Dixon, Ray E.</au><au>Joye, Samantha B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization</atitle><jtitle>Journal of Geophysical Research: Biogeosciences</jtitle><addtitle>J. Geophys. Res</addtitle><date>2006-03</date><risdate>2006</risdate><volume>111</volume><issue>G1</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduction (18%), denitrification (10%), and iron reduction (10%). Upon salinity intrusion, nutrient (ammonium, silicate, phosphate) concentrations increased and rates of methanogenesis declined. Iron‐oxide bioavailability increased and microbial iron reduction appeared to account for >60% of organic matter oxidation for several days after salinity intrusion. However, sulfate reduction was the dominant pathway (>50%) of organic matter oxidation within 2 weeks of salinity intrusion, and accounted for >95% of total organic matter mineralization after 4 weeks. Total in situ sediment organic matter mineralization doubled following salinity intrusion. Increased nutrient release, decreased methanogenesis and a rapid shift to sulfate reduction, with a coincident increase overall organic matter mineralization, accompanied salinity intrusion into previously freshwater riverine sediments.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JG000071</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Biogeosciences, 2006-03, Vol.111 (G1), p.n/a |
issn | 0148-0227 2156-2202 |
language | eng |
recordid | cdi_crossref_primary_10_1029_2005JG000071 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | carbon cycling denitrification Earth sciences Earth, ocean, space Exact sciences and technology iron reduction methanogenesis salinity intrusion sulfate reduction |
title | Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ramifications%20of%20increased%20salinity%20in%20tidal%20freshwater%20sediments:%20Geochemistry%20and%20microbial%20pathways%20of%20organic%20matter%20mineralization&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Biogeosciences&rft.au=Weston,%20Nathaniel%20B.&rft.date=2006-03&rft.volume=111&rft.issue=G1&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JG000071&rft_dat=%3Cwiley_cross%3EJGRG38%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |