Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization

The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Biogeosciences 2006-03, Vol.111 (G1), p.n/a
Hauptverfasser: Weston, Nathaniel B., Dixon, Ray E., Joye, Samantha B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue G1
container_start_page
container_title Journal of Geophysical Research: Biogeosciences
container_volume 111
creator Weston, Nathaniel B.
Dixon, Ray E.
Joye, Samantha B.
description The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduction (18%), denitrification (10%), and iron reduction (10%). Upon salinity intrusion, nutrient (ammonium, silicate, phosphate) concentrations increased and rates of methanogenesis declined. Iron‐oxide bioavailability increased and microbial iron reduction appeared to account for >60% of organic matter oxidation for several days after salinity intrusion. However, sulfate reduction was the dominant pathway (>50%) of organic matter oxidation within 2 weeks of salinity intrusion, and accounted for >95% of total organic matter mineralization after 4 weeks. Total in situ sediment organic matter mineralization doubled following salinity intrusion. Increased nutrient release, decreased methanogenesis and a rapid shift to sulfate reduction, with a coincident increase overall organic matter mineralization, accompanied salinity intrusion into previously freshwater riverine sediments.
doi_str_mv 10.1029/2005JG000071
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2005JG000071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRG38</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4718-ed4aa61b55f1cfdb52aee88500b32ef134f9d10d17a201b46479fe5ca81ba58b3</originalsourceid><addsrcrecordid>eNp9kM1O3DAURi0EEiOYXR_Am-4asJ04Tti1o5KC0CCNQNOddeNcF9P8jOxIkL4Ar10PQaUr7sbS1TnftT5CPnF2xpkozwVj8rpicRQ_IAvBZZ4IwcQhWTCeFQkTQh2TZQiPeyaTecb4grxsoHPWGRjd0Ac6WOp64xECNjRA63o3TnFFR9dAS63H8PAEI3oaAddhP4YLWuFgHrBzYfQThb6hnTN-qF0UdjBGfnoNHvwv6J2hHYz7gM716OOFP6-nT8mRhTbg8u09IfeX3-9WP5Kb2-pq9fUmgUzxIsEmA8h5LaXlxja1FIBYFJKxOhVoeZrZsuGs4QoE43WWZ6q0KA0UvAZZ1OkJ-TLnxh-G4NHqnXcd-Elzpvc96v97jPjnGd9BMNBaD71x4d1RSqi8LCPHZu7JtTh9mKmvq02VFlFJZiX2hs__FPC_da5SJfV2XWm2_vZzLbZCq_QvYkWTGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Weston, Nathaniel B. ; Dixon, Ray E. ; Joye, Samantha B.</creator><creatorcontrib>Weston, Nathaniel B. ; Dixon, Ray E. ; Joye, Samantha B.</creatorcontrib><description>The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduction (18%), denitrification (10%), and iron reduction (10%). Upon salinity intrusion, nutrient (ammonium, silicate, phosphate) concentrations increased and rates of methanogenesis declined. Iron‐oxide bioavailability increased and microbial iron reduction appeared to account for &gt;60% of organic matter oxidation for several days after salinity intrusion. However, sulfate reduction was the dominant pathway (&gt;50%) of organic matter oxidation within 2 weeks of salinity intrusion, and accounted for &gt;95% of total organic matter mineralization after 4 weeks. Total in situ sediment organic matter mineralization doubled following salinity intrusion. Increased nutrient release, decreased methanogenesis and a rapid shift to sulfate reduction, with a coincident increase overall organic matter mineralization, accompanied salinity intrusion into previously freshwater riverine sediments.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2005JG000071</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>carbon cycling ; denitrification ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; iron reduction ; methanogenesis ; salinity intrusion ; sulfate reduction</subject><ispartof>Journal of Geophysical Research: Biogeosciences, 2006-03, Vol.111 (G1), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4718-ed4aa61b55f1cfdb52aee88500b32ef134f9d10d17a201b46479fe5ca81ba58b3</citedby><cites>FETCH-LOGICAL-a4718-ed4aa61b55f1cfdb52aee88500b32ef134f9d10d17a201b46479fe5ca81ba58b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JG000071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JG000071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17727699$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weston, Nathaniel B.</creatorcontrib><creatorcontrib>Dixon, Ray E.</creatorcontrib><creatorcontrib>Joye, Samantha B.</creatorcontrib><title>Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization</title><title>Journal of Geophysical Research: Biogeosciences</title><addtitle>J. Geophys. Res</addtitle><description>The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduction (18%), denitrification (10%), and iron reduction (10%). Upon salinity intrusion, nutrient (ammonium, silicate, phosphate) concentrations increased and rates of methanogenesis declined. Iron‐oxide bioavailability increased and microbial iron reduction appeared to account for &gt;60% of organic matter oxidation for several days after salinity intrusion. However, sulfate reduction was the dominant pathway (&gt;50%) of organic matter oxidation within 2 weeks of salinity intrusion, and accounted for &gt;95% of total organic matter mineralization after 4 weeks. Total in situ sediment organic matter mineralization doubled following salinity intrusion. Increased nutrient release, decreased methanogenesis and a rapid shift to sulfate reduction, with a coincident increase overall organic matter mineralization, accompanied salinity intrusion into previously freshwater riverine sediments.</description><subject>carbon cycling</subject><subject>denitrification</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>iron reduction</subject><subject>methanogenesis</subject><subject>salinity intrusion</subject><subject>sulfate reduction</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O3DAURi0EEiOYXR_Am-4asJ04Tti1o5KC0CCNQNOddeNcF9P8jOxIkL4Ar10PQaUr7sbS1TnftT5CPnF2xpkozwVj8rpicRQ_IAvBZZ4IwcQhWTCeFQkTQh2TZQiPeyaTecb4grxsoHPWGRjd0Ac6WOp64xECNjRA63o3TnFFR9dAS63H8PAEI3oaAddhP4YLWuFgHrBzYfQThb6hnTN-qF0UdjBGfnoNHvwv6J2hHYz7gM716OOFP6-nT8mRhTbg8u09IfeX3-9WP5Kb2-pq9fUmgUzxIsEmA8h5LaXlxja1FIBYFJKxOhVoeZrZsuGs4QoE43WWZ6q0KA0UvAZZ1OkJ-TLnxh-G4NHqnXcd-Elzpvc96v97jPjnGd9BMNBaD71x4d1RSqi8LCPHZu7JtTh9mKmvq02VFlFJZiX2hs__FPC_da5SJfV2XWm2_vZzLbZCq_QvYkWTGA</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Weston, Nathaniel B.</creator><creator>Dixon, Ray E.</creator><creator>Joye, Samantha B.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200603</creationdate><title>Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization</title><author>Weston, Nathaniel B. ; Dixon, Ray E. ; Joye, Samantha B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4718-ed4aa61b55f1cfdb52aee88500b32ef134f9d10d17a201b46479fe5ca81ba58b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>carbon cycling</topic><topic>denitrification</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>iron reduction</topic><topic>methanogenesis</topic><topic>salinity intrusion</topic><topic>sulfate reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weston, Nathaniel B.</creatorcontrib><creatorcontrib>Dixon, Ray E.</creatorcontrib><creatorcontrib>Joye, Samantha B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weston, Nathaniel B.</au><au>Dixon, Ray E.</au><au>Joye, Samantha B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization</atitle><jtitle>Journal of Geophysical Research: Biogeosciences</jtitle><addtitle>J. Geophys. Res</addtitle><date>2006-03</date><risdate>2006</risdate><volume>111</volume><issue>G1</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>The effects of salinity intrusion on the anaerobic microbial and geochemical dynamics of tidal freshwater sediments were investigated using flow‐through sediment reactors. In freshwater control sediments, organic matter mineralization was dominated by methanogenesis (62%), followed by sulfate reduction (18%), denitrification (10%), and iron reduction (10%). Upon salinity intrusion, nutrient (ammonium, silicate, phosphate) concentrations increased and rates of methanogenesis declined. Iron‐oxide bioavailability increased and microbial iron reduction appeared to account for &gt;60% of organic matter oxidation for several days after salinity intrusion. However, sulfate reduction was the dominant pathway (&gt;50%) of organic matter oxidation within 2 weeks of salinity intrusion, and accounted for &gt;95% of total organic matter mineralization after 4 weeks. Total in situ sediment organic matter mineralization doubled following salinity intrusion. Increased nutrient release, decreased methanogenesis and a rapid shift to sulfate reduction, with a coincident increase overall organic matter mineralization, accompanied salinity intrusion into previously freshwater riverine sediments.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JG000071</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Biogeosciences, 2006-03, Vol.111 (G1), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_crossref_primary_10_1029_2005JG000071
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects carbon cycling
denitrification
Earth sciences
Earth, ocean, space
Exact sciences and technology
iron reduction
methanogenesis
salinity intrusion
sulfate reduction
title Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ramifications%20of%20increased%20salinity%20in%20tidal%20freshwater%20sediments:%20Geochemistry%20and%20microbial%20pathways%20of%20organic%20matter%20mineralization&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Biogeosciences&rft.au=Weston,%20Nathaniel%20B.&rft.date=2006-03&rft.volume=111&rft.issue=G1&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JG000071&rft_dat=%3Cwiley_cross%3EJGRG38%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true