Modeling entrainment of sedimentary particles by wind and water: A generalized approach
For long‐standing theoretical reasons, it is often asserted that the threshold shear stress for entrainment of sedimentary particles (τ*t = ρfu*t2, made dimensionless as A = ρfu*t2/((ρp − ρf)gd)) has a universal relationship with the particle Reynolds number (Re*t = u*td/ν), where u*t is the thresho...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Atmospheres 2005-12, Vol.110 (D24), p.D24114.1-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For long‐standing theoretical reasons, it is often asserted that the threshold shear stress for entrainment of sedimentary particles (τ*t = ρfu*t2, made dimensionless as A = ρfu*t2/((ρp − ρf)gd)) has a universal relationship with the particle Reynolds number (Re*t = u*td/ν), where u*t is the threshold friction velocity, ρf is the fluid density, ρp is the density of the particles, d is the particle diameter, g is the gravitational acceleration and ν is the kinematic viscosity of the fluid. However, experimental plots of A(Re*t) for sediment entrainment in air and water show two major differences: (1) For large Re*t, the values of A in water are, in general, a few times larger than those in air, and (2) when Re*t |
---|---|
ISSN: | 0148-0227 2156-2202 |
DOI: | 10.1029/2005JD006418 |