Multiobjective design of water distribution systems under uncertainty

The water distribution system (WDS) design problem is defined here as a multiobjective optimization problem under uncertainty. The two objectives are (1) minimize the total WDS design cost and (2) maximize WDS robustness. The WDS robustness is defined as the probability of simultaneously satisfying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2005-11, Vol.41 (11), p.n/a
Hauptverfasser: Kapelan, Z.S, Savic, D.A, Walters, G.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Water resources research
container_volume 41
creator Kapelan, Z.S
Savic, D.A
Walters, G.A
description The water distribution system (WDS) design problem is defined here as a multiobjective optimization problem under uncertainty. The two objectives are (1) minimize the total WDS design cost and (2) maximize WDS robustness. The WDS robustness is defined as the probability of simultaneously satisfying minimum pressure head constraints at all nodes in the network. Decision variables are the alternative design options for each pipe in the network. The sources of uncertainty are future water consumption and pipe roughness coefficients. Uncertain variables are modeled using probability density functions (PDFs) assigned in the problem formulation phase. The corresponding PDFs of the analyzed nodal heads are calculated using the Latin hypercube sampling technique. The optimal design problem is solved using the newly developed RNSGAII method based on the nondominated sorting genetic algorithm II (NSGAII). In RNSGAII a small number of samples are used for each fitness evaluation, leading to significant computational savings when compared to the full sampling approach. Chromosome fitness is defined here in the same way as in the NSGAII optimization methodology. The new methodology is tested on several cases, all based on the New York tunnels reinforcement problem. The results obtained demonstrate that the new methodology is capable of identifying robust Pareto optimal solutions despite significantly reduced computational effort.
doi_str_mv 10.1029/2004WR003787
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2004WR003787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_GFL6G08L_Q</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4022-6527f9522e167a045341e46abfe1fc65d61c195982bb8630cd949ae55d3225223</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFZv3s0HMDr7P3uU0lYhKlZLj8sm2ZStbSK7qTXf3i0V8eRpYN7vzfAeQpcYbjAQdUsA2GIGQGUmj9AAK8ZSqSQ9RoOo0BRTJU_RWQgrAMy4kAM0ftyuO9cWK1t27tMmlQ1u2SRtnexMZ31SudB5V2wj0yShD53dhGTbVFHaNqX1nXFN15-jk9qsg734mUM0n4zfRvdp_jx9GN3lqWFASCo4kbXihFgspAHGKcOWCVPUFtel4JXAJVZcZaQoMkGhrBRTxnJeUUKijQ7R9eFu6dsQvK31h3cb43uNQe8r0H8riDg94Du3tv2_rF7MRrO4pfsn6cEVo9uvX5fx71pIKrlePE31dJKLKWS5fon81YGvTavN0rug568EMAUMPNbM6DduuXWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiobjective design of water distribution systems under uncertainty</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kapelan, Z.S ; Savic, D.A ; Walters, G.A</creator><creatorcontrib>Kapelan, Z.S ; Savic, D.A ; Walters, G.A</creatorcontrib><description>The water distribution system (WDS) design problem is defined here as a multiobjective optimization problem under uncertainty. The two objectives are (1) minimize the total WDS design cost and (2) maximize WDS robustness. The WDS robustness is defined as the probability of simultaneously satisfying minimum pressure head constraints at all nodes in the network. Decision variables are the alternative design options for each pipe in the network. The sources of uncertainty are future water consumption and pipe roughness coefficients. Uncertain variables are modeled using probability density functions (PDFs) assigned in the problem formulation phase. The corresponding PDFs of the analyzed nodal heads are calculated using the Latin hypercube sampling technique. The optimal design problem is solved using the newly developed RNSGAII method based on the nondominated sorting genetic algorithm II (NSGAII). In RNSGAII a small number of samples are used for each fitness evaluation, leading to significant computational savings when compared to the full sampling approach. Chromosome fitness is defined here in the same way as in the NSGAII optimization methodology. The new methodology is tested on several cases, all based on the New York tunnels reinforcement problem. The results obtained demonstrate that the new methodology is capable of identifying robust Pareto optimal solutions despite significantly reduced computational effort.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2004WR003787</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>case studies ; decision making ; design ; genetic algorithms ; methodology ; multiple objective analysis ; new methods ; optimization ; pipe networks ; pressure ; simulation models ; uncertainty ; water distribution ; water flow ; water management</subject><ispartof>Water resources research, 2005-11, Vol.41 (11), p.n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4022-6527f9522e167a045341e46abfe1fc65d61c195982bb8630cd949ae55d3225223</citedby><cites>FETCH-LOGICAL-a4022-6527f9522e167a045341e46abfe1fc65d61c195982bb8630cd949ae55d3225223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2004WR003787$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2004WR003787$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Kapelan, Z.S</creatorcontrib><creatorcontrib>Savic, D.A</creatorcontrib><creatorcontrib>Walters, G.A</creatorcontrib><title>Multiobjective design of water distribution systems under uncertainty</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>The water distribution system (WDS) design problem is defined here as a multiobjective optimization problem under uncertainty. The two objectives are (1) minimize the total WDS design cost and (2) maximize WDS robustness. The WDS robustness is defined as the probability of simultaneously satisfying minimum pressure head constraints at all nodes in the network. Decision variables are the alternative design options for each pipe in the network. The sources of uncertainty are future water consumption and pipe roughness coefficients. Uncertain variables are modeled using probability density functions (PDFs) assigned in the problem formulation phase. The corresponding PDFs of the analyzed nodal heads are calculated using the Latin hypercube sampling technique. The optimal design problem is solved using the newly developed RNSGAII method based on the nondominated sorting genetic algorithm II (NSGAII). In RNSGAII a small number of samples are used for each fitness evaluation, leading to significant computational savings when compared to the full sampling approach. Chromosome fitness is defined here in the same way as in the NSGAII optimization methodology. The new methodology is tested on several cases, all based on the New York tunnels reinforcement problem. The results obtained demonstrate that the new methodology is capable of identifying robust Pareto optimal solutions despite significantly reduced computational effort.</description><subject>case studies</subject><subject>decision making</subject><subject>design</subject><subject>genetic algorithms</subject><subject>methodology</subject><subject>multiple objective analysis</subject><subject>new methods</subject><subject>optimization</subject><subject>pipe networks</subject><subject>pressure</subject><subject>simulation models</subject><subject>uncertainty</subject><subject>water distribution</subject><subject>water flow</subject><subject>water management</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFZv3s0HMDr7P3uU0lYhKlZLj8sm2ZStbSK7qTXf3i0V8eRpYN7vzfAeQpcYbjAQdUsA2GIGQGUmj9AAK8ZSqSQ9RoOo0BRTJU_RWQgrAMy4kAM0ftyuO9cWK1t27tMmlQ1u2SRtnexMZ31SudB5V2wj0yShD53dhGTbVFHaNqX1nXFN15-jk9qsg734mUM0n4zfRvdp_jx9GN3lqWFASCo4kbXihFgspAHGKcOWCVPUFtel4JXAJVZcZaQoMkGhrBRTxnJeUUKijQ7R9eFu6dsQvK31h3cb43uNQe8r0H8riDg94Du3tv2_rF7MRrO4pfsn6cEVo9uvX5fx71pIKrlePE31dJKLKWS5fon81YGvTavN0rug568EMAUMPNbM6DduuXWM</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Kapelan, Z.S</creator><creator>Savic, D.A</creator><creator>Walters, G.A</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200511</creationdate><title>Multiobjective design of water distribution systems under uncertainty</title><author>Kapelan, Z.S ; Savic, D.A ; Walters, G.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4022-6527f9522e167a045341e46abfe1fc65d61c195982bb8630cd949ae55d3225223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>case studies</topic><topic>decision making</topic><topic>design</topic><topic>genetic algorithms</topic><topic>methodology</topic><topic>multiple objective analysis</topic><topic>new methods</topic><topic>optimization</topic><topic>pipe networks</topic><topic>pressure</topic><topic>simulation models</topic><topic>uncertainty</topic><topic>water distribution</topic><topic>water flow</topic><topic>water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapelan, Z.S</creatorcontrib><creatorcontrib>Savic, D.A</creatorcontrib><creatorcontrib>Walters, G.A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapelan, Z.S</au><au>Savic, D.A</au><au>Walters, G.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective design of water distribution systems under uncertainty</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2005-11</date><risdate>2005</risdate><volume>41</volume><issue>11</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The water distribution system (WDS) design problem is defined here as a multiobjective optimization problem under uncertainty. The two objectives are (1) minimize the total WDS design cost and (2) maximize WDS robustness. The WDS robustness is defined as the probability of simultaneously satisfying minimum pressure head constraints at all nodes in the network. Decision variables are the alternative design options for each pipe in the network. The sources of uncertainty are future water consumption and pipe roughness coefficients. Uncertain variables are modeled using probability density functions (PDFs) assigned in the problem formulation phase. The corresponding PDFs of the analyzed nodal heads are calculated using the Latin hypercube sampling technique. The optimal design problem is solved using the newly developed RNSGAII method based on the nondominated sorting genetic algorithm II (NSGAII). In RNSGAII a small number of samples are used for each fitness evaluation, leading to significant computational savings when compared to the full sampling approach. Chromosome fitness is defined here in the same way as in the NSGAII optimization methodology. The new methodology is tested on several cases, all based on the New York tunnels reinforcement problem. The results obtained demonstrate that the new methodology is capable of identifying robust Pareto optimal solutions despite significantly reduced computational effort.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2004WR003787</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2005-11, Vol.41 (11), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_crossref_primary_10_1029_2004WR003787
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects case studies
decision making
design
genetic algorithms
methodology
multiple objective analysis
new methods
optimization
pipe networks
pressure
simulation models
uncertainty
water distribution
water flow
water management
title Multiobjective design of water distribution systems under uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20design%20of%20water%20distribution%20systems%20under%20uncertainty&rft.jtitle=Water%20resources%20research&rft.au=Kapelan,%20Z.S&rft.date=2005-11&rft.volume=41&rft.issue=11&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2004WR003787&rft_dat=%3Cistex_cross%3Eark_67375_WNG_GFL6G08L_Q%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true