Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation

In situ measurements of water vapor and temperature from recent aircraft campaigns have provided evidence that the upper troposphere is frequently supersaturated with respect to ice. The peak relative humidities with respect to ice (RHI) occasionally approached water saturation at temperatures rangi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2001-08, Vol.106 (D15), p.17253-17266
Hauptverfasser: Jensen, Eric J., Toon, Owen B., Vay, Stephanie A., Ovarlez, Joëlle, May, Randy, Bui, T. P., Twohy, Cynthia. H., Gandrud, Bruce W., Pueschel, Rudolf F., Schumann, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17266
container_issue D15
container_start_page 17253
container_title Journal of Geophysical Research: Atmospheres
container_volume 106
creator Jensen, Eric J.
Toon, Owen B.
Vay, Stephanie A.
Ovarlez, Joëlle
May, Randy
Bui, T. P.
Twohy, Cynthia. H.
Gandrud, Bruce W.
Pueschel, Rudolf F.
Schumann, Ulrich
description In situ measurements of water vapor and temperature from recent aircraft campaigns have provided evidence that the upper troposphere is frequently supersaturated with respect to ice. The peak relative humidities with respect to ice (RHI) occasionally approached water saturation at temperatures ranging from −40°C to −70°C in each of the campaigns. The occurrence frequency of ice supersaturation ranged from about 20% to 45%. Even on flight segments when no ice crystals were detected, ice supersaturation was measured about 5–20% of the time. A numerical cloud model is used to simulate the formation of optically thin, low ice number density cirrus clouds in these supersaturated regions. The potential for scavenging of ice nuclei (IN) by these clouds is evaluated. The simulations suggest that if less than about 5×10−3 to 2×10−2 cm−3 ice nuclei are present when these supersaturations are generated, then the cirrus formed should be subvisible. These low ice number density clouds scavenge the IN from the supersaturated layer, but the crystals sediment out too rapidly to prevent buildup of high supersaturations. If higher numbers of ice nuclei are present, then the clouds that form are visible and deposition growth of the ice crystals reduces the RHI down to near 100%. Even if no ice clouds form, increasing the RHI from 100% to 150% between 10 and 10.5 km results in a decrease in outgoing longwave radiative flux at the top of the atmosphere of about 8 W m−2. If 0.02–0.1 cm−3 IN are present, the resulting cloud radiative forcing reduces the net radiative flux several watts per square meter further. Given the high frequency of supersaturated regions without optically thick clouds in the upper troposphere, there is a potential for a climatically important class of optically thin cirrus with relatively low ice crystal number densities. The optical properties of these clouds will depend very strongly on the abundance of ice nuclei in the upper troposphere.
doi_str_mv 10.1029/2000JD900526
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2000JD900526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_KFG7RC6S_S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4477-1cc7ac54287257979adb7ef0663fe5e1d02cd09bb0f2604a37542ef157bcddde3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiQS5-QN68OjqtPtR1psBWUGiBjQem9KdyurCbtoF5d9bwKgnT5PJPM-bmSHklMEFA55ecgAY9VOAmCcHpMVZnAScAz8kLWBRNwDOxTHpOPfmQYjiJALWIutHi2tV4lIjrQwtNAZuVaN1qllZ1WBOLb4W1dLRYkmbOdJV7ae0sVVduXqOFq_ocFGXhVbNDjOVpVXd-L4sN97wmg-luqxW-Xa42HEn5Mio0mHnu7bJ8-DmqXcbjB-yYe96HOgoEiJgWgul44h3BY9FKlKVzwQaSJLQYIwsB65zSGczMDyBSIXCs2hYLGY6z3MM2-R8n6tt5ZxFI2tbLJTdSAZy-zb5920eP9vjtXL-AGPVUhfu12EsDgXzGN9jH0WJm38j5Sib9LvAhJeCvVS4Bj9_JGXfZSL84vLlPpN3g0xMeslUTsMvBnmMfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Jensen, Eric J. ; Toon, Owen B. ; Vay, Stephanie A. ; Ovarlez, Joëlle ; May, Randy ; Bui, T. P. ; Twohy, Cynthia. H. ; Gandrud, Bruce W. ; Pueschel, Rudolf F. ; Schumann, Ulrich</creator><creatorcontrib>Jensen, Eric J. ; Toon, Owen B. ; Vay, Stephanie A. ; Ovarlez, Joëlle ; May, Randy ; Bui, T. P. ; Twohy, Cynthia. H. ; Gandrud, Bruce W. ; Pueschel, Rudolf F. ; Schumann, Ulrich</creatorcontrib><description>In situ measurements of water vapor and temperature from recent aircraft campaigns have provided evidence that the upper troposphere is frequently supersaturated with respect to ice. The peak relative humidities with respect to ice (RHI) occasionally approached water saturation at temperatures ranging from −40°C to −70°C in each of the campaigns. The occurrence frequency of ice supersaturation ranged from about 20% to 45%. Even on flight segments when no ice crystals were detected, ice supersaturation was measured about 5–20% of the time. A numerical cloud model is used to simulate the formation of optically thin, low ice number density cirrus clouds in these supersaturated regions. The potential for scavenging of ice nuclei (IN) by these clouds is evaluated. The simulations suggest that if less than about 5×10−3 to 2×10−2 cm−3 ice nuclei are present when these supersaturations are generated, then the cirrus formed should be subvisible. These low ice number density clouds scavenge the IN from the supersaturated layer, but the crystals sediment out too rapidly to prevent buildup of high supersaturations. If higher numbers of ice nuclei are present, then the clouds that form are visible and deposition growth of the ice crystals reduces the RHI down to near 100%. Even if no ice clouds form, increasing the RHI from 100% to 150% between 10 and 10.5 km results in a decrease in outgoing longwave radiative flux at the top of the atmosphere of about 8 W m−2. If 0.02–0.1 cm−3 IN are present, the resulting cloud radiative forcing reduces the net radiative flux several watts per square meter further. Given the high frequency of supersaturated regions without optically thick clouds in the upper troposphere, there is a potential for a climatically important class of optically thin cirrus with relatively low ice crystal number densities. The optical properties of these clouds will depend very strongly on the abundance of ice nuclei in the upper troposphere.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2000JD900526</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2001-08, Vol.106 (D15), p.17253-17266</ispartof><rights>Copyright 2001 by the American Geophysical Union.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4477-1cc7ac54287257979adb7ef0663fe5e1d02cd09bb0f2604a37542ef157bcddde3</citedby><cites>FETCH-LOGICAL-c4477-1cc7ac54287257979adb7ef0663fe5e1d02cd09bb0f2604a37542ef157bcddde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2000JD900526$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2000JD900526$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1115371$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Eric J.</creatorcontrib><creatorcontrib>Toon, Owen B.</creatorcontrib><creatorcontrib>Vay, Stephanie A.</creatorcontrib><creatorcontrib>Ovarlez, Joëlle</creatorcontrib><creatorcontrib>May, Randy</creatorcontrib><creatorcontrib>Bui, T. P.</creatorcontrib><creatorcontrib>Twohy, Cynthia. H.</creatorcontrib><creatorcontrib>Gandrud, Bruce W.</creatorcontrib><creatorcontrib>Pueschel, Rudolf F.</creatorcontrib><creatorcontrib>Schumann, Ulrich</creatorcontrib><title>Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>In situ measurements of water vapor and temperature from recent aircraft campaigns have provided evidence that the upper troposphere is frequently supersaturated with respect to ice. The peak relative humidities with respect to ice (RHI) occasionally approached water saturation at temperatures ranging from −40°C to −70°C in each of the campaigns. The occurrence frequency of ice supersaturation ranged from about 20% to 45%. Even on flight segments when no ice crystals were detected, ice supersaturation was measured about 5–20% of the time. A numerical cloud model is used to simulate the formation of optically thin, low ice number density cirrus clouds in these supersaturated regions. The potential for scavenging of ice nuclei (IN) by these clouds is evaluated. The simulations suggest that if less than about 5×10−3 to 2×10−2 cm−3 ice nuclei are present when these supersaturations are generated, then the cirrus formed should be subvisible. These low ice number density clouds scavenge the IN from the supersaturated layer, but the crystals sediment out too rapidly to prevent buildup of high supersaturations. If higher numbers of ice nuclei are present, then the clouds that form are visible and deposition growth of the ice crystals reduces the RHI down to near 100%. Even if no ice clouds form, increasing the RHI from 100% to 150% between 10 and 10.5 km results in a decrease in outgoing longwave radiative flux at the top of the atmosphere of about 8 W m−2. If 0.02–0.1 cm−3 IN are present, the resulting cloud radiative forcing reduces the net radiative flux several watts per square meter further. Given the high frequency of supersaturated regions without optically thick clouds in the upper troposphere, there is a potential for a climatically important class of optically thin cirrus with relatively low ice crystal number densities. The optical properties of these clouds will depend very strongly on the abundance of ice nuclei in the upper troposphere.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujiQS5-QN68OjqtPtR1psBWUGiBjQem9KdyurCbtoF5d9bwKgnT5PJPM-bmSHklMEFA55ecgAY9VOAmCcHpMVZnAScAz8kLWBRNwDOxTHpOPfmQYjiJALWIutHi2tV4lIjrQwtNAZuVaN1qllZ1WBOLb4W1dLRYkmbOdJV7ae0sVVduXqOFq_ocFGXhVbNDjOVpVXd-L4sN97wmg-luqxW-Xa42HEn5Mio0mHnu7bJ8-DmqXcbjB-yYe96HOgoEiJgWgul44h3BY9FKlKVzwQaSJLQYIwsB65zSGczMDyBSIXCs2hYLGY6z3MM2-R8n6tt5ZxFI2tbLJTdSAZy-zb5920eP9vjtXL-AGPVUhfu12EsDgXzGN9jH0WJm38j5Sib9LvAhJeCvVS4Bj9_JGXfZSL84vLlPpN3g0xMeslUTsMvBnmMfw</recordid><startdate>20010816</startdate><enddate>20010816</enddate><creator>Jensen, Eric J.</creator><creator>Toon, Owen B.</creator><creator>Vay, Stephanie A.</creator><creator>Ovarlez, Joëlle</creator><creator>May, Randy</creator><creator>Bui, T. P.</creator><creator>Twohy, Cynthia. H.</creator><creator>Gandrud, Bruce W.</creator><creator>Pueschel, Rudolf F.</creator><creator>Schumann, Ulrich</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010816</creationdate><title>Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation</title><author>Jensen, Eric J. ; Toon, Owen B. ; Vay, Stephanie A. ; Ovarlez, Joëlle ; May, Randy ; Bui, T. P. ; Twohy, Cynthia. H. ; Gandrud, Bruce W. ; Pueschel, Rudolf F. ; Schumann, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4477-1cc7ac54287257979adb7ef0663fe5e1d02cd09bb0f2604a37542ef157bcddde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Eric J.</creatorcontrib><creatorcontrib>Toon, Owen B.</creatorcontrib><creatorcontrib>Vay, Stephanie A.</creatorcontrib><creatorcontrib>Ovarlez, Joëlle</creatorcontrib><creatorcontrib>May, Randy</creatorcontrib><creatorcontrib>Bui, T. P.</creatorcontrib><creatorcontrib>Twohy, Cynthia. H.</creatorcontrib><creatorcontrib>Gandrud, Bruce W.</creatorcontrib><creatorcontrib>Pueschel, Rudolf F.</creatorcontrib><creatorcontrib>Schumann, Ulrich</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Eric J.</au><au>Toon, Owen B.</au><au>Vay, Stephanie A.</au><au>Ovarlez, Joëlle</au><au>May, Randy</au><au>Bui, T. P.</au><au>Twohy, Cynthia. H.</au><au>Gandrud, Bruce W.</au><au>Pueschel, Rudolf F.</au><au>Schumann, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2001-08-16</date><risdate>2001</risdate><volume>106</volume><issue>D15</issue><spage>17253</spage><epage>17266</epage><pages>17253-17266</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>In situ measurements of water vapor and temperature from recent aircraft campaigns have provided evidence that the upper troposphere is frequently supersaturated with respect to ice. The peak relative humidities with respect to ice (RHI) occasionally approached water saturation at temperatures ranging from −40°C to −70°C in each of the campaigns. The occurrence frequency of ice supersaturation ranged from about 20% to 45%. Even on flight segments when no ice crystals were detected, ice supersaturation was measured about 5–20% of the time. A numerical cloud model is used to simulate the formation of optically thin, low ice number density cirrus clouds in these supersaturated regions. The potential for scavenging of ice nuclei (IN) by these clouds is evaluated. The simulations suggest that if less than about 5×10−3 to 2×10−2 cm−3 ice nuclei are present when these supersaturations are generated, then the cirrus formed should be subvisible. These low ice number density clouds scavenge the IN from the supersaturated layer, but the crystals sediment out too rapidly to prevent buildup of high supersaturations. If higher numbers of ice nuclei are present, then the clouds that form are visible and deposition growth of the ice crystals reduces the RHI down to near 100%. Even if no ice clouds form, increasing the RHI from 100% to 150% between 10 and 10.5 km results in a decrease in outgoing longwave radiative flux at the top of the atmosphere of about 8 W m−2. If 0.02–0.1 cm−3 IN are present, the resulting cloud radiative forcing reduces the net radiative flux several watts per square meter further. Given the high frequency of supersaturated regions without optically thick clouds in the upper troposphere, there is a potential for a climatically important class of optically thin cirrus with relatively low ice crystal number densities. The optical properties of these clouds will depend very strongly on the abundance of ice nuclei in the upper troposphere.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2000JD900526</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2001-08, Vol.106 (D15), p.17253-17266
issn 0148-0227
2156-2202
language eng
recordid cdi_crossref_primary_10_1029_2000JD900526
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
Water in the atmosphere (humidity, clouds, evaporation, precipitation)
title Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevalence%20of%20ice-supersaturated%20regions%20in%20the%20upper%20troposphere:%20Implications%20for%20optically%20thin%20ice%20cloud%20formation&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Jensen,%20Eric%20J.&rft.date=2001-08-16&rft.volume=106&rft.issue=D15&rft.spage=17253&rft.epage=17266&rft.pages=17253-17266&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2000JD900526&rft_dat=%3Cistex_cross%3Eark_67375_WNG_KFG7RC6S_S%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true