Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures

Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2015-01, Vol.14 (1), p.183-192
Hauptverfasser: Ge, Yue, Bruno, Maribel, Wallace, Kathleen, Leavitt, Sharon, Andrews, Debora, Spassova, Maria A, Xi, Mingyu, Roy, Anindya, Haykal-Coates, Najwa, Lefew, William, Swank, Adam, Winnik, Witold M, Chen, Chao, Woodard, Jonne, Farraj, Aimen, Teichman, Kevin Y, Ross, Jeffrey A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 1
container_start_page 183
container_title Journal of proteome research
container_volume 14
creator Ge, Yue
Bruno, Maribel
Wallace, Kathleen
Leavitt, Sharon
Andrews, Debora
Spassova, Maria A
Xi, Mingyu
Roy, Anindya
Haykal-Coates, Najwa
Lefew, William
Swank, Adam
Winnik, Witold M
Chen, Chao
Woodard, Jonne
Farraj, Aimen
Teichman, Kevin Y
Ross, Jeffrey A
description Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.
doi_str_mv 10.1021/pr500795d
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_pr500795d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a319940041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-50e54952baa36a0dd21e337f3ec97e3b5b695b4677063b606467ea7b6c24729e3</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EoqWw4ALIGxYsAk4c282yigpUagXiZx05zkR11cSR7UoN1-DCuAplxWrezHzzNHoIXcfkPiZJ_NBZRojIWHWCxjGjLKIZEadHPc3oCF04tyEkZoLQczRKWDJlGU_H6Pu9dx4a6bXCr9Z4ME1Qs66zRqo19gbna2ml8mD1F2C_BrxoutA7bOqwg4DLLV60AQhTbdqwaAcr3WLZVjjvvfFmr5X2PX4D1wUG3MF6BT7crvTe7yzg-b4zLgh3ic5quXVw9Vsn6PNx_pE_R8uXp0U-W0aSxsxHjABLM5aUUlIuSVUlMVAqagoqE0BLVvKMlSkXgnBacsKDBClKrpJUJBnQCbobfJU1zlmoi87qRtq-iElxCLb4CzawNwPb7coGqj_ymGQAbgdAKldszM624fV_jH4AFYGCdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Ge, Yue ; Bruno, Maribel ; Wallace, Kathleen ; Leavitt, Sharon ; Andrews, Debora ; Spassova, Maria A ; Xi, Mingyu ; Roy, Anindya ; Haykal-Coates, Najwa ; Lefew, William ; Swank, Adam ; Winnik, Witold M ; Chen, Chao ; Woodard, Jonne ; Farraj, Aimen ; Teichman, Kevin Y ; Ross, Jeffrey A</creator><creatorcontrib>Ge, Yue ; Bruno, Maribel ; Wallace, Kathleen ; Leavitt, Sharon ; Andrews, Debora ; Spassova, Maria A ; Xi, Mingyu ; Roy, Anindya ; Haykal-Coates, Najwa ; Lefew, William ; Swank, Adam ; Winnik, Witold M ; Chen, Chao ; Woodard, Jonne ; Farraj, Aimen ; Teichman, Kevin Y ; Ross, Jeffrey A</creatorcontrib><description>Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr500795d</identifier><identifier>PMID: 25285964</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Apoptosis - drug effects ; Cadmium - toxicity ; Cell Line ; Chromium - toxicity ; Cluster Analysis ; Dose-Response Relationship, Drug ; Drug Interactions ; Environmental Pollutants - toxicity ; Gene Expression - drug effects ; Gluconeogenesis - drug effects ; Glycolysis - drug effects ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Nickel - toxicity ; Phosphorylation ; Protein Processing, Post-Translational ; Proteome - genetics ; Proteome - metabolism ; Proteomics ; Risk Assessment</subject><ispartof>Journal of proteome research, 2015-01, Vol.14 (1), p.183-192</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-50e54952baa36a0dd21e337f3ec97e3b5b695b4677063b606467ea7b6c24729e3</citedby><cites>FETCH-LOGICAL-a315t-50e54952baa36a0dd21e337f3ec97e3b5b695b4677063b606467ea7b6c24729e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr500795d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr500795d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25285964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Yue</creatorcontrib><creatorcontrib>Bruno, Maribel</creatorcontrib><creatorcontrib>Wallace, Kathleen</creatorcontrib><creatorcontrib>Leavitt, Sharon</creatorcontrib><creatorcontrib>Andrews, Debora</creatorcontrib><creatorcontrib>Spassova, Maria A</creatorcontrib><creatorcontrib>Xi, Mingyu</creatorcontrib><creatorcontrib>Roy, Anindya</creatorcontrib><creatorcontrib>Haykal-Coates, Najwa</creatorcontrib><creatorcontrib>Lefew, William</creatorcontrib><creatorcontrib>Swank, Adam</creatorcontrib><creatorcontrib>Winnik, Witold M</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Woodard, Jonne</creatorcontrib><creatorcontrib>Farraj, Aimen</creatorcontrib><creatorcontrib>Teichman, Kevin Y</creatorcontrib><creatorcontrib>Ross, Jeffrey A</creatorcontrib><title>Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.</description><subject>Apoptosis - drug effects</subject><subject>Cadmium - toxicity</subject><subject>Cell Line</subject><subject>Chromium - toxicity</subject><subject>Cluster Analysis</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Interactions</subject><subject>Environmental Pollutants - toxicity</subject><subject>Gene Expression - drug effects</subject><subject>Gluconeogenesis - drug effects</subject><subject>Glycolysis - drug effects</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Nickel - toxicity</subject><subject>Phosphorylation</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteome - genetics</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Risk Assessment</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1OwzAQhS0EoqWw4ALIGxYsAk4c282yigpUagXiZx05zkR11cSR7UoN1-DCuAplxWrezHzzNHoIXcfkPiZJ_NBZRojIWHWCxjGjLKIZEadHPc3oCF04tyEkZoLQczRKWDJlGU_H6Pu9dx4a6bXCr9Z4ME1Qs66zRqo19gbna2ml8mD1F2C_BrxoutA7bOqwg4DLLV60AQhTbdqwaAcr3WLZVjjvvfFmr5X2PX4D1wUG3MF6BT7crvTe7yzg-b4zLgh3ic5quXVw9Vsn6PNx_pE_R8uXp0U-W0aSxsxHjABLM5aUUlIuSVUlMVAqagoqE0BLVvKMlSkXgnBacsKDBClKrpJUJBnQCbobfJU1zlmoi87qRtq-iElxCLb4CzawNwPb7coGqj_ymGQAbgdAKldszM624fV_jH4AFYGCdw</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Ge, Yue</creator><creator>Bruno, Maribel</creator><creator>Wallace, Kathleen</creator><creator>Leavitt, Sharon</creator><creator>Andrews, Debora</creator><creator>Spassova, Maria A</creator><creator>Xi, Mingyu</creator><creator>Roy, Anindya</creator><creator>Haykal-Coates, Najwa</creator><creator>Lefew, William</creator><creator>Swank, Adam</creator><creator>Winnik, Witold M</creator><creator>Chen, Chao</creator><creator>Woodard, Jonne</creator><creator>Farraj, Aimen</creator><creator>Teichman, Kevin Y</creator><creator>Ross, Jeffrey A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150102</creationdate><title>Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures</title><author>Ge, Yue ; Bruno, Maribel ; Wallace, Kathleen ; Leavitt, Sharon ; Andrews, Debora ; Spassova, Maria A ; Xi, Mingyu ; Roy, Anindya ; Haykal-Coates, Najwa ; Lefew, William ; Swank, Adam ; Winnik, Witold M ; Chen, Chao ; Woodard, Jonne ; Farraj, Aimen ; Teichman, Kevin Y ; Ross, Jeffrey A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-50e54952baa36a0dd21e337f3ec97e3b5b695b4677063b606467ea7b6c24729e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Apoptosis - drug effects</topic><topic>Cadmium - toxicity</topic><topic>Cell Line</topic><topic>Chromium - toxicity</topic><topic>Cluster Analysis</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Interactions</topic><topic>Environmental Pollutants - toxicity</topic><topic>Gene Expression - drug effects</topic><topic>Gluconeogenesis - drug effects</topic><topic>Glycolysis - drug effects</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Nickel - toxicity</topic><topic>Phosphorylation</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteome - genetics</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Risk Assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Yue</creatorcontrib><creatorcontrib>Bruno, Maribel</creatorcontrib><creatorcontrib>Wallace, Kathleen</creatorcontrib><creatorcontrib>Leavitt, Sharon</creatorcontrib><creatorcontrib>Andrews, Debora</creatorcontrib><creatorcontrib>Spassova, Maria A</creatorcontrib><creatorcontrib>Xi, Mingyu</creatorcontrib><creatorcontrib>Roy, Anindya</creatorcontrib><creatorcontrib>Haykal-Coates, Najwa</creatorcontrib><creatorcontrib>Lefew, William</creatorcontrib><creatorcontrib>Swank, Adam</creatorcontrib><creatorcontrib>Winnik, Witold M</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Woodard, Jonne</creatorcontrib><creatorcontrib>Farraj, Aimen</creatorcontrib><creatorcontrib>Teichman, Kevin Y</creatorcontrib><creatorcontrib>Ross, Jeffrey A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Yue</au><au>Bruno, Maribel</au><au>Wallace, Kathleen</au><au>Leavitt, Sharon</au><au>Andrews, Debora</au><au>Spassova, Maria A</au><au>Xi, Mingyu</au><au>Roy, Anindya</au><au>Haykal-Coates, Najwa</au><au>Lefew, William</au><au>Swank, Adam</au><au>Winnik, Witold M</au><au>Chen, Chao</au><au>Woodard, Jonne</au><au>Farraj, Aimen</au><au>Teichman, Kevin Y</au><au>Ross, Jeffrey A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2015-01-02</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25285964</pmid><doi>10.1021/pr500795d</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2015-01, Vol.14 (1), p.183-192
issn 1535-3893
1535-3907
language eng
recordid cdi_crossref_primary_10_1021_pr500795d
source MEDLINE; American Chemical Society Journals
subjects Apoptosis - drug effects
Cadmium - toxicity
Cell Line
Chromium - toxicity
Cluster Analysis
Dose-Response Relationship, Drug
Drug Interactions
Environmental Pollutants - toxicity
Gene Expression - drug effects
Gluconeogenesis - drug effects
Glycolysis - drug effects
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Nickel - toxicity
Phosphorylation
Protein Processing, Post-Translational
Proteome - genetics
Proteome - metabolism
Proteomics
Risk Assessment
title Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Proteomic%20Approach%20to%20Characterize%20the%20Impacts%20of%20Chemical%20Interactions%20on%20Protein%20and%20Cytotoxicity%20Responses%20to%20Metal%20Mixture%20Exposures&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Ge,%20Yue&rft.date=2015-01-02&rft.volume=14&rft.issue=1&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr500795d&rft_dat=%3Cacs_cross%3Ea319940041%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25285964&rfr_iscdi=true