Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures
Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach in...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2015-01, Vol.14 (1), p.183-192 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 1 |
container_start_page | 183 |
container_title | Journal of proteome research |
container_volume | 14 |
creator | Ge, Yue Bruno, Maribel Wallace, Kathleen Leavitt, Sharon Andrews, Debora Spassova, Maria A Xi, Mingyu Roy, Anindya Haykal-Coates, Najwa Lefew, William Swank, Adam Winnik, Witold M Chen, Chao Woodard, Jonne Farraj, Aimen Teichman, Kevin Y Ross, Jeffrey A |
description | Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures. |
doi_str_mv | 10.1021/pr500795d |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_pr500795d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a319940041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-50e54952baa36a0dd21e337f3ec97e3b5b695b4677063b606467ea7b6c24729e3</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EoqWw4ALIGxYsAk4c282yigpUagXiZx05zkR11cSR7UoN1-DCuAplxWrezHzzNHoIXcfkPiZJ_NBZRojIWHWCxjGjLKIZEadHPc3oCF04tyEkZoLQczRKWDJlGU_H6Pu9dx4a6bXCr9Z4ME1Qs66zRqo19gbna2ml8mD1F2C_BrxoutA7bOqwg4DLLV60AQhTbdqwaAcr3WLZVjjvvfFmr5X2PX4D1wUG3MF6BT7crvTe7yzg-b4zLgh3ic5quXVw9Vsn6PNx_pE_R8uXp0U-W0aSxsxHjABLM5aUUlIuSVUlMVAqagoqE0BLVvKMlSkXgnBacsKDBClKrpJUJBnQCbobfJU1zlmoi87qRtq-iElxCLb4CzawNwPb7coGqj_ymGQAbgdAKldszM624fV_jH4AFYGCdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Ge, Yue ; Bruno, Maribel ; Wallace, Kathleen ; Leavitt, Sharon ; Andrews, Debora ; Spassova, Maria A ; Xi, Mingyu ; Roy, Anindya ; Haykal-Coates, Najwa ; Lefew, William ; Swank, Adam ; Winnik, Witold M ; Chen, Chao ; Woodard, Jonne ; Farraj, Aimen ; Teichman, Kevin Y ; Ross, Jeffrey A</creator><creatorcontrib>Ge, Yue ; Bruno, Maribel ; Wallace, Kathleen ; Leavitt, Sharon ; Andrews, Debora ; Spassova, Maria A ; Xi, Mingyu ; Roy, Anindya ; Haykal-Coates, Najwa ; Lefew, William ; Swank, Adam ; Winnik, Witold M ; Chen, Chao ; Woodard, Jonne ; Farraj, Aimen ; Teichman, Kevin Y ; Ross, Jeffrey A</creatorcontrib><description>Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr500795d</identifier><identifier>PMID: 25285964</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Apoptosis - drug effects ; Cadmium - toxicity ; Cell Line ; Chromium - toxicity ; Cluster Analysis ; Dose-Response Relationship, Drug ; Drug Interactions ; Environmental Pollutants - toxicity ; Gene Expression - drug effects ; Gluconeogenesis - drug effects ; Glycolysis - drug effects ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Nickel - toxicity ; Phosphorylation ; Protein Processing, Post-Translational ; Proteome - genetics ; Proteome - metabolism ; Proteomics ; Risk Assessment</subject><ispartof>Journal of proteome research, 2015-01, Vol.14 (1), p.183-192</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-50e54952baa36a0dd21e337f3ec97e3b5b695b4677063b606467ea7b6c24729e3</citedby><cites>FETCH-LOGICAL-a315t-50e54952baa36a0dd21e337f3ec97e3b5b695b4677063b606467ea7b6c24729e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr500795d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr500795d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25285964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Yue</creatorcontrib><creatorcontrib>Bruno, Maribel</creatorcontrib><creatorcontrib>Wallace, Kathleen</creatorcontrib><creatorcontrib>Leavitt, Sharon</creatorcontrib><creatorcontrib>Andrews, Debora</creatorcontrib><creatorcontrib>Spassova, Maria A</creatorcontrib><creatorcontrib>Xi, Mingyu</creatorcontrib><creatorcontrib>Roy, Anindya</creatorcontrib><creatorcontrib>Haykal-Coates, Najwa</creatorcontrib><creatorcontrib>Lefew, William</creatorcontrib><creatorcontrib>Swank, Adam</creatorcontrib><creatorcontrib>Winnik, Witold M</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Woodard, Jonne</creatorcontrib><creatorcontrib>Farraj, Aimen</creatorcontrib><creatorcontrib>Teichman, Kevin Y</creatorcontrib><creatorcontrib>Ross, Jeffrey A</creatorcontrib><title>Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.</description><subject>Apoptosis - drug effects</subject><subject>Cadmium - toxicity</subject><subject>Cell Line</subject><subject>Chromium - toxicity</subject><subject>Cluster Analysis</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Interactions</subject><subject>Environmental Pollutants - toxicity</subject><subject>Gene Expression - drug effects</subject><subject>Gluconeogenesis - drug effects</subject><subject>Glycolysis - drug effects</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Nickel - toxicity</subject><subject>Phosphorylation</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteome - genetics</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Risk Assessment</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1OwzAQhS0EoqWw4ALIGxYsAk4c282yigpUagXiZx05zkR11cSR7UoN1-DCuAplxWrezHzzNHoIXcfkPiZJ_NBZRojIWHWCxjGjLKIZEadHPc3oCF04tyEkZoLQczRKWDJlGU_H6Pu9dx4a6bXCr9Z4ME1Qs66zRqo19gbna2ml8mD1F2C_BrxoutA7bOqwg4DLLV60AQhTbdqwaAcr3WLZVjjvvfFmr5X2PX4D1wUG3MF6BT7crvTe7yzg-b4zLgh3ic5quXVw9Vsn6PNx_pE_R8uXp0U-W0aSxsxHjABLM5aUUlIuSVUlMVAqagoqE0BLVvKMlSkXgnBacsKDBClKrpJUJBnQCbobfJU1zlmoi87qRtq-iElxCLb4CzawNwPb7coGqj_ymGQAbgdAKldszM624fV_jH4AFYGCdw</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Ge, Yue</creator><creator>Bruno, Maribel</creator><creator>Wallace, Kathleen</creator><creator>Leavitt, Sharon</creator><creator>Andrews, Debora</creator><creator>Spassova, Maria A</creator><creator>Xi, Mingyu</creator><creator>Roy, Anindya</creator><creator>Haykal-Coates, Najwa</creator><creator>Lefew, William</creator><creator>Swank, Adam</creator><creator>Winnik, Witold M</creator><creator>Chen, Chao</creator><creator>Woodard, Jonne</creator><creator>Farraj, Aimen</creator><creator>Teichman, Kevin Y</creator><creator>Ross, Jeffrey A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150102</creationdate><title>Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures</title><author>Ge, Yue ; Bruno, Maribel ; Wallace, Kathleen ; Leavitt, Sharon ; Andrews, Debora ; Spassova, Maria A ; Xi, Mingyu ; Roy, Anindya ; Haykal-Coates, Najwa ; Lefew, William ; Swank, Adam ; Winnik, Witold M ; Chen, Chao ; Woodard, Jonne ; Farraj, Aimen ; Teichman, Kevin Y ; Ross, Jeffrey A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-50e54952baa36a0dd21e337f3ec97e3b5b695b4677063b606467ea7b6c24729e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Apoptosis - drug effects</topic><topic>Cadmium - toxicity</topic><topic>Cell Line</topic><topic>Chromium - toxicity</topic><topic>Cluster Analysis</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Interactions</topic><topic>Environmental Pollutants - toxicity</topic><topic>Gene Expression - drug effects</topic><topic>Gluconeogenesis - drug effects</topic><topic>Glycolysis - drug effects</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Nickel - toxicity</topic><topic>Phosphorylation</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteome - genetics</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Risk Assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Yue</creatorcontrib><creatorcontrib>Bruno, Maribel</creatorcontrib><creatorcontrib>Wallace, Kathleen</creatorcontrib><creatorcontrib>Leavitt, Sharon</creatorcontrib><creatorcontrib>Andrews, Debora</creatorcontrib><creatorcontrib>Spassova, Maria A</creatorcontrib><creatorcontrib>Xi, Mingyu</creatorcontrib><creatorcontrib>Roy, Anindya</creatorcontrib><creatorcontrib>Haykal-Coates, Najwa</creatorcontrib><creatorcontrib>Lefew, William</creatorcontrib><creatorcontrib>Swank, Adam</creatorcontrib><creatorcontrib>Winnik, Witold M</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Woodard, Jonne</creatorcontrib><creatorcontrib>Farraj, Aimen</creatorcontrib><creatorcontrib>Teichman, Kevin Y</creatorcontrib><creatorcontrib>Ross, Jeffrey A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Yue</au><au>Bruno, Maribel</au><au>Wallace, Kathleen</au><au>Leavitt, Sharon</au><au>Andrews, Debora</au><au>Spassova, Maria A</au><au>Xi, Mingyu</au><au>Roy, Anindya</au><au>Haykal-Coates, Najwa</au><au>Lefew, William</au><au>Swank, Adam</au><au>Winnik, Witold M</au><au>Chen, Chao</au><au>Woodard, Jonne</au><au>Farraj, Aimen</au><au>Teichman, Kevin Y</au><au>Ross, Jeffrey A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2015-01-02</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25285964</pmid><doi>10.1021/pr500795d</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2015-01, Vol.14 (1), p.183-192 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_crossref_primary_10_1021_pr500795d |
source | MEDLINE; American Chemical Society Journals |
subjects | Apoptosis - drug effects Cadmium - toxicity Cell Line Chromium - toxicity Cluster Analysis Dose-Response Relationship, Drug Drug Interactions Environmental Pollutants - toxicity Gene Expression - drug effects Gluconeogenesis - drug effects Glycolysis - drug effects Humans Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Nickel - toxicity Phosphorylation Protein Processing, Post-Translational Proteome - genetics Proteome - metabolism Proteomics Risk Assessment |
title | Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Proteomic%20Approach%20to%20Characterize%20the%20Impacts%20of%20Chemical%20Interactions%20on%20Protein%20and%20Cytotoxicity%20Responses%20to%20Metal%20Mixture%20Exposures&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Ge,%20Yue&rft.date=2015-01-02&rft.volume=14&rft.issue=1&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr500795d&rft_dat=%3Cacs_cross%3Ea319940041%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25285964&rfr_iscdi=true |