Mechanism of the Pyridine-Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene

The pyridine-modified cobalt-catalyzed hydromethoxycarbonylation of 1,3-butadiene (1) starts by the disproportionation of Co2(CO)8 to [CoPy6][Co(CO)4]2 followed by the formation of HCo(CO)4 (3). The addition of 3 to 1 leads to CH3CHCHCH2Co(CO)4 (4), which, depending on the conditions, can undergo f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organometallics 2003-04, Vol.22 (8), p.1582-1584
Hauptverfasser: Tuba, Róbert, Mika, László T, Bodor, Andrea, Pusztai, Zoltán, Tóth, Imre, Horváth, István T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1584
container_issue 8
container_start_page 1582
container_title Organometallics
container_volume 22
creator Tuba, Róbert
Mika, László T
Bodor, Andrea
Pusztai, Zoltán
Tóth, Imre
Horváth, István T
description The pyridine-modified cobalt-catalyzed hydromethoxycarbonylation of 1,3-butadiene (1) starts by the disproportionation of Co2(CO)8 to [CoPy6][Co(CO)4]2 followed by the formation of HCo(CO)4 (3). The addition of 3 to 1 leads to CH3CHCHCH2Co(CO)4 (4), which, depending on the conditions, can undergo facile CO insertion to yield CH3CHCHCH2COCo(CO)4 (5) or reversible decarbonylation to form η3-C4H7Co(CO)3 (7). Pyridine accelerates the conversion of 7 to methyl-3-pentenoate (2) and the methanolysis of 5.
doi_str_mv 10.1021/om030058x
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_om030058x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_R6M6VR3V_N</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-bd1f605c61a04392ca3de142b2ca4a083d38b0aa42b712d595b12a44bddd9bcf3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKsL_8FsXAhG85hHZ6mDWqHVUmuXhptJhqbOTCRJoeOvd0qlK1f3cPj44B6ELim5pYTRO9sQTkgy2h6hAU0YwSmJ6TEaEJalOOOcn6Iz79eEkDTjbIA-p7pcQWt8E9kqCisdzTpnlGk1nlplKqNVVFgJdcAFBKi7n74Yd8rZRoeV3XYlOGnbroZgbLtz0BuOHzYBlNGtPkcnFdReX_zdIfp4elwUYzx5e34p7icYWJ4ELBWtUpKUKQUS85yVwJWmMZN9ioGMuOIjSQD6JqNMJXkiKYM4lkqpXJYVH6Lrvbd01nunK_HtTAOuE5SI3TDiMEzP4j1rfNDbAwjuS_SbZIlYzN7FPJ2myzlfiteev9rzUHqxthvX9p_84_0FyjVymg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanism of the Pyridine-Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene</title><source>ACS Publications</source><creator>Tuba, Róbert ; Mika, László T ; Bodor, Andrea ; Pusztai, Zoltán ; Tóth, Imre ; Horváth, István T</creator><creatorcontrib>Tuba, Róbert ; Mika, László T ; Bodor, Andrea ; Pusztai, Zoltán ; Tóth, Imre ; Horváth, István T</creatorcontrib><description>The pyridine-modified cobalt-catalyzed hydromethoxycarbonylation of 1,3-butadiene (1) starts by the disproportionation of Co2(CO)8 to [CoPy6][Co(CO)4]2 followed by the formation of HCo(CO)4 (3). The addition of 3 to 1 leads to CH3CHCHCH2Co(CO)4 (4), which, depending on the conditions, can undergo facile CO insertion to yield CH3CHCHCH2COCo(CO)4 (5) or reversible decarbonylation to form η3-C4H7Co(CO)3 (7). Pyridine accelerates the conversion of 7 to methyl-3-pentenoate (2) and the methanolysis of 5.</description><identifier>ISSN: 0276-7333</identifier><identifier>EISSN: 1520-6041</identifier><identifier>DOI: 10.1021/om030058x</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Organometallics, 2003-04, Vol.22 (8), p.1582-1584</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-bd1f605c61a04392ca3de142b2ca4a083d38b0aa42b712d595b12a44bddd9bcf3</citedby><cites>FETCH-LOGICAL-a295t-bd1f605c61a04392ca3de142b2ca4a083d38b0aa42b712d595b12a44bddd9bcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/om030058x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/om030058x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Tuba, Róbert</creatorcontrib><creatorcontrib>Mika, László T</creatorcontrib><creatorcontrib>Bodor, Andrea</creatorcontrib><creatorcontrib>Pusztai, Zoltán</creatorcontrib><creatorcontrib>Tóth, Imre</creatorcontrib><creatorcontrib>Horváth, István T</creatorcontrib><title>Mechanism of the Pyridine-Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene</title><title>Organometallics</title><addtitle>Organometallics</addtitle><description>The pyridine-modified cobalt-catalyzed hydromethoxycarbonylation of 1,3-butadiene (1) starts by the disproportionation of Co2(CO)8 to [CoPy6][Co(CO)4]2 followed by the formation of HCo(CO)4 (3). The addition of 3 to 1 leads to CH3CHCHCH2Co(CO)4 (4), which, depending on the conditions, can undergo facile CO insertion to yield CH3CHCHCH2COCo(CO)4 (5) or reversible decarbonylation to form η3-C4H7Co(CO)3 (7). Pyridine accelerates the conversion of 7 to methyl-3-pentenoate (2) and the methanolysis of 5.</description><issn>0276-7333</issn><issn>1520-6041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWKsL_8FsXAhG85hHZ6mDWqHVUmuXhptJhqbOTCRJoeOvd0qlK1f3cPj44B6ELim5pYTRO9sQTkgy2h6hAU0YwSmJ6TEaEJalOOOcn6Iz79eEkDTjbIA-p7pcQWt8E9kqCisdzTpnlGk1nlplKqNVVFgJdcAFBKi7n74Yd8rZRoeV3XYlOGnbroZgbLtz0BuOHzYBlNGtPkcnFdReX_zdIfp4elwUYzx5e34p7icYWJ4ELBWtUpKUKQUS85yVwJWmMZN9ioGMuOIjSQD6JqNMJXkiKYM4lkqpXJYVH6Lrvbd01nunK_HtTAOuE5SI3TDiMEzP4j1rfNDbAwjuS_SbZIlYzN7FPJ2myzlfiteev9rzUHqxthvX9p_84_0FyjVymg</recordid><startdate>20030414</startdate><enddate>20030414</enddate><creator>Tuba, Róbert</creator><creator>Mika, László T</creator><creator>Bodor, Andrea</creator><creator>Pusztai, Zoltán</creator><creator>Tóth, Imre</creator><creator>Horváth, István T</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030414</creationdate><title>Mechanism of the Pyridine-Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene</title><author>Tuba, Róbert ; Mika, László T ; Bodor, Andrea ; Pusztai, Zoltán ; Tóth, Imre ; Horváth, István T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-bd1f605c61a04392ca3de142b2ca4a083d38b0aa42b712d595b12a44bddd9bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuba, Róbert</creatorcontrib><creatorcontrib>Mika, László T</creatorcontrib><creatorcontrib>Bodor, Andrea</creatorcontrib><creatorcontrib>Pusztai, Zoltán</creatorcontrib><creatorcontrib>Tóth, Imre</creatorcontrib><creatorcontrib>Horváth, István T</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Organometallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuba, Róbert</au><au>Mika, László T</au><au>Bodor, Andrea</au><au>Pusztai, Zoltán</au><au>Tóth, Imre</au><au>Horváth, István T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of the Pyridine-Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene</atitle><jtitle>Organometallics</jtitle><addtitle>Organometallics</addtitle><date>2003-04-14</date><risdate>2003</risdate><volume>22</volume><issue>8</issue><spage>1582</spage><epage>1584</epage><pages>1582-1584</pages><issn>0276-7333</issn><eissn>1520-6041</eissn><abstract>The pyridine-modified cobalt-catalyzed hydromethoxycarbonylation of 1,3-butadiene (1) starts by the disproportionation of Co2(CO)8 to [CoPy6][Co(CO)4]2 followed by the formation of HCo(CO)4 (3). The addition of 3 to 1 leads to CH3CHCHCH2Co(CO)4 (4), which, depending on the conditions, can undergo facile CO insertion to yield CH3CHCHCH2COCo(CO)4 (5) or reversible decarbonylation to form η3-C4H7Co(CO)3 (7). Pyridine accelerates the conversion of 7 to methyl-3-pentenoate (2) and the methanolysis of 5.</abstract><pub>American Chemical Society</pub><doi>10.1021/om030058x</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0276-7333
ispartof Organometallics, 2003-04, Vol.22 (8), p.1582-1584
issn 0276-7333
1520-6041
language eng
recordid cdi_crossref_primary_10_1021_om030058x
source ACS Publications
title Mechanism of the Pyridine-Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20the%20Pyridine-Modified%20Cobalt-Catalyzed%20Hydromethoxycarbonylation%20of%201,3-Butadiene&rft.jtitle=Organometallics&rft.au=Tuba,%20R%C3%B3bert&rft.date=2003-04-14&rft.volume=22&rft.issue=8&rft.spage=1582&rft.epage=1584&rft.pages=1582-1584&rft.issn=0276-7333&rft.eissn=1520-6041&rft_id=info:doi/10.1021/om030058x&rft_dat=%3Cistex_cross%3Eark_67375_TPS_R6M6VR3V_N%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true