Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones
This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetat...
Gespeichert in:
Veröffentlicht in: | Journal of natural products (Washington, D.C.) D.C.), 1997-03, Vol.60 (3), p.252-257 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | 3 |
container_start_page | 252 |
container_title | Journal of natural products (Washington, D.C.) |
container_volume | 60 |
creator | Beekman, Aäron C Woerdenbag, Herman J van Uden, Wim Pras, Niesko Konings, Antonius W. T Wikström, Håkan V Schmidt, Thomas J |
description | This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetate (2) and isobutyrate (3) were more toxic than helenalin itself (1). Esters with larger acyl groups (tiglate 4 and isovalerate 5) exhibited a decreased toxicity compared with the parent alcohol (1). Similar relationships were observed between the 6,8-diastereomer of helenalin, mexicanin I (6) and its acetate (7) and isovalerate (8). In contrast, cytotoxicity within a series of 11α,13-dihydrohelenalin esters (9−12) was shown to be directly related to the size and lipophilicity of the ester side chain, dihydrohelenalin (9) being the least toxic compound in this group. Investigation of several 2,3-dihydrohelenalin derivatives (13−21) with 2α-hydroxy-4-oxo- and 2α,4α-dihydroxy- or -O-acyl-substituted cyclopentane rings (arnifolins and chamissonolides, respectively), for which no pharmacological data have been reported so far, revealed further interesting influences of the substitution pattern on cytotoxicity. The results may be interpreted in terms of lipophilicity and steric effects on the accessibility of the reactive sites considered responsible for biological activity. |
doi_str_mv | 10.1021/np960517h |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_np960517h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_XHZJ43LC_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-6be3c9d1a794034570d1472619f020742c24e6fdcb04e6c716895ecc665c8aee3</originalsourceid><addsrcrecordid>eNptkL2O1DAURi0EWmYXClokpBRsQRG4_ok9Llcj2AGNBCKzAtFYHueG9ZKJg-1IO29AzSPyJARlNBXVLc7Rp6tDyDMKrykw-qYftISKqtsHZEErBqUEVj0kC6CSl3wpxWNyntIdAHDQ1Rk506BhKdWCfKlzHF0eI_759Xt1yCGHe-98PhSfsbPZhz7d-iEVoS3qsMdijR32tg-db7DcHgYsakw_R58xDthjsbEuhx7TE_KotV3Cp8d7QW7evd2u1uXm4_X71dWmtEKyXModcqcbapUWwEWloKFCMUl1CwyUYI4JlG3jdjBdp6hc6gqdk7JyS4vIL8iredfFkFLE1gzR7208GArmXxtzajO5L2Z3GHd7bE7mMcbEXx65Tc52bbS98-mkMcklFXLSylnzKeP9Cdv4w0wjqjLbT7X5uv72QfDNylxP_vPZb20w9nucJm9qrZgGySd4OUPrkrkLY-ynWv_5_S-kuZEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones</title><source>MEDLINE</source><source>ACS Publications</source><creator>Beekman, Aäron C ; Woerdenbag, Herman J ; van Uden, Wim ; Pras, Niesko ; Konings, Antonius W. T ; Wikström, Håkan V ; Schmidt, Thomas J</creator><creatorcontrib>Beekman, Aäron C ; Woerdenbag, Herman J ; van Uden, Wim ; Pras, Niesko ; Konings, Antonius W. T ; Wikström, Håkan V ; Schmidt, Thomas J</creatorcontrib><description>This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetate (2) and isobutyrate (3) were more toxic than helenalin itself (1). Esters with larger acyl groups (tiglate 4 and isovalerate 5) exhibited a decreased toxicity compared with the parent alcohol (1). Similar relationships were observed between the 6,8-diastereomer of helenalin, mexicanin I (6) and its acetate (7) and isovalerate (8). In contrast, cytotoxicity within a series of 11α,13-dihydrohelenalin esters (9−12) was shown to be directly related to the size and lipophilicity of the ester side chain, dihydrohelenalin (9) being the least toxic compound in this group. Investigation of several 2,3-dihydrohelenalin derivatives (13−21) with 2α-hydroxy-4-oxo- and 2α,4α-dihydroxy- or -O-acyl-substituted cyclopentane rings (arnifolins and chamissonolides, respectively), for which no pharmacological data have been reported so far, revealed further interesting influences of the substitution pattern on cytotoxicity. The results may be interpreted in terms of lipophilicity and steric effects on the accessibility of the reactive sites considered responsible for biological activity.</description><identifier>ISSN: 0163-3864</identifier><identifier>EISSN: 1520-6025</identifier><identifier>DOI: 10.1021/np960517h</identifier><identifier>PMID: 9090867</identifier><identifier>CODEN: JNPRDF</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>11 ALPHA, 13-DIHYDROHELENALINS ; 2,3-DIHYDROHELENALINS ; Animals ; Antineoplastic agents ; Antineoplastic Agents, Phytogenic - isolation & purification ; Antineoplastic Agents, Phytogenic - pharmacology ; ARNICA ; ARNIFOLINS ; Biological and medical sciences ; Carcinoma, Ehrlich Tumor - drug therapy ; CHAMISSONOLIDES ; CHEMICAL STRUCTURE ; Chromatography, High Pressure Liquid ; Computer Simulation ; CYTOTOXIC COMPOUNDS ; DRUG PLANTS ; Drug Screening Assays, Antitumor ; ESPECTROMETRIA ; ESTRUCTURA QUIMICA ; EXTRACTOS VEGETALES ; EXTRAIT D'ORIGINE VEGETALE ; General aspects ; General pharmacology ; HELENALINS ; LACTONAS ; LACTONE ; LACTONES ; Lactones - isolation & purification ; Lactones - pharmacology ; Medical sciences ; MEXICANINS I ; Mice ; Models, Structural ; Molecular Conformation ; PHARMACEUTICAL PRODUCTS ; Pharmacognosy. Homeopathy. Health food ; Pharmacology. Drug treatments ; PLANT EXTRACTS ; PLANTAS MEDICINALES ; PLANTE MEDICINALE ; Sesquiterpenes - isolation & purification ; Sesquiterpenes - pharmacology ; SESQUITERPENOIDE ; SESQUITERPENOIDS ; SESQUITERPENOS ; SPECTRAL ANALYSIS ; SPECTROMETRIE ; SPECTROMETRY ; STRUCTURE ACTIVITY RELATIONSHIPS ; STRUCTURE CHIMIQUE ; Structure-Activity Relationship ; SUBSTANCE TOXIQUE ; SUSTANCIAS TOXICAS ; Tetrazolium Salts ; Thiazoles ; TOXIC SUBSTANCES ; Tumor Cells, Cultured</subject><ispartof>Journal of natural products (Washington, D.C.), 1997-03, Vol.60 (3), p.252-257</ispartof><rights>Copyright © 1997 American Chemical Society and American Society of Pharmacognosy</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-6be3c9d1a794034570d1472619f020742c24e6fdcb04e6c716895ecc665c8aee3</citedby><cites>FETCH-LOGICAL-a462t-6be3c9d1a794034570d1472619f020742c24e6fdcb04e6c716895ecc665c8aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/np960517h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/np960517h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2636146$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9090867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beekman, Aäron C</creatorcontrib><creatorcontrib>Woerdenbag, Herman J</creatorcontrib><creatorcontrib>van Uden, Wim</creatorcontrib><creatorcontrib>Pras, Niesko</creatorcontrib><creatorcontrib>Konings, Antonius W. T</creatorcontrib><creatorcontrib>Wikström, Håkan V</creatorcontrib><creatorcontrib>Schmidt, Thomas J</creatorcontrib><title>Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones</title><title>Journal of natural products (Washington, D.C.)</title><addtitle>J. Nat. Prod</addtitle><description>This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetate (2) and isobutyrate (3) were more toxic than helenalin itself (1). Esters with larger acyl groups (tiglate 4 and isovalerate 5) exhibited a decreased toxicity compared with the parent alcohol (1). Similar relationships were observed between the 6,8-diastereomer of helenalin, mexicanin I (6) and its acetate (7) and isovalerate (8). In contrast, cytotoxicity within a series of 11α,13-dihydrohelenalin esters (9−12) was shown to be directly related to the size and lipophilicity of the ester side chain, dihydrohelenalin (9) being the least toxic compound in this group. Investigation of several 2,3-dihydrohelenalin derivatives (13−21) with 2α-hydroxy-4-oxo- and 2α,4α-dihydroxy- or -O-acyl-substituted cyclopentane rings (arnifolins and chamissonolides, respectively), for which no pharmacological data have been reported so far, revealed further interesting influences of the substitution pattern on cytotoxicity. The results may be interpreted in terms of lipophilicity and steric effects on the accessibility of the reactive sites considered responsible for biological activity.</description><subject>11 ALPHA, 13-DIHYDROHELENALINS</subject><subject>2,3-DIHYDROHELENALINS</subject><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Antineoplastic Agents, Phytogenic - isolation & purification</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>ARNICA</subject><subject>ARNIFOLINS</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Ehrlich Tumor - drug therapy</subject><subject>CHAMISSONOLIDES</subject><subject>CHEMICAL STRUCTURE</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Computer Simulation</subject><subject>CYTOTOXIC COMPOUNDS</subject><subject>DRUG PLANTS</subject><subject>Drug Screening Assays, Antitumor</subject><subject>ESPECTROMETRIA</subject><subject>ESTRUCTURA QUIMICA</subject><subject>EXTRACTOS VEGETALES</subject><subject>EXTRAIT D'ORIGINE VEGETALE</subject><subject>General aspects</subject><subject>General pharmacology</subject><subject>HELENALINS</subject><subject>LACTONAS</subject><subject>LACTONE</subject><subject>LACTONES</subject><subject>Lactones - isolation & purification</subject><subject>Lactones - pharmacology</subject><subject>Medical sciences</subject><subject>MEXICANINS I</subject><subject>Mice</subject><subject>Models, Structural</subject><subject>Molecular Conformation</subject><subject>PHARMACEUTICAL PRODUCTS</subject><subject>Pharmacognosy. Homeopathy. Health food</subject><subject>Pharmacology. Drug treatments</subject><subject>PLANT EXTRACTS</subject><subject>PLANTAS MEDICINALES</subject><subject>PLANTE MEDICINALE</subject><subject>Sesquiterpenes - isolation & purification</subject><subject>Sesquiterpenes - pharmacology</subject><subject>SESQUITERPENOIDE</subject><subject>SESQUITERPENOIDS</subject><subject>SESQUITERPENOS</subject><subject>SPECTRAL ANALYSIS</subject><subject>SPECTROMETRIE</subject><subject>SPECTROMETRY</subject><subject>STRUCTURE ACTIVITY RELATIONSHIPS</subject><subject>STRUCTURE CHIMIQUE</subject><subject>Structure-Activity Relationship</subject><subject>SUBSTANCE TOXIQUE</subject><subject>SUSTANCIAS TOXICAS</subject><subject>Tetrazolium Salts</subject><subject>Thiazoles</subject><subject>TOXIC SUBSTANCES</subject><subject>Tumor Cells, Cultured</subject><issn>0163-3864</issn><issn>1520-6025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkL2O1DAURi0EWmYXClokpBRsQRG4_ok9Llcj2AGNBCKzAtFYHueG9ZKJg-1IO29AzSPyJARlNBXVLc7Rp6tDyDMKrykw-qYftISKqtsHZEErBqUEVj0kC6CSl3wpxWNyntIdAHDQ1Rk506BhKdWCfKlzHF0eI_759Xt1yCGHe-98PhSfsbPZhz7d-iEVoS3qsMdijR32tg-db7DcHgYsakw_R58xDthjsbEuhx7TE_KotV3Cp8d7QW7evd2u1uXm4_X71dWmtEKyXModcqcbapUWwEWloKFCMUl1CwyUYI4JlG3jdjBdp6hc6gqdk7JyS4vIL8iredfFkFLE1gzR7208GArmXxtzajO5L2Z3GHd7bE7mMcbEXx65Tc52bbS98-mkMcklFXLSylnzKeP9Cdv4w0wjqjLbT7X5uv72QfDNylxP_vPZb20w9nucJm9qrZgGySd4OUPrkrkLY-ynWv_5_S-kuZEn</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Beekman, Aäron C</creator><creator>Woerdenbag, Herman J</creator><creator>van Uden, Wim</creator><creator>Pras, Niesko</creator><creator>Konings, Antonius W. T</creator><creator>Wikström, Håkan V</creator><creator>Schmidt, Thomas J</creator><general>American Chemical Society</general><general>American Society of Pharmacognosy</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970301</creationdate><title>Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones</title><author>Beekman, Aäron C ; Woerdenbag, Herman J ; van Uden, Wim ; Pras, Niesko ; Konings, Antonius W. T ; Wikström, Håkan V ; Schmidt, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-6be3c9d1a794034570d1472619f020742c24e6fdcb04e6c716895ecc665c8aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>11 ALPHA, 13-DIHYDROHELENALINS</topic><topic>2,3-DIHYDROHELENALINS</topic><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Antineoplastic Agents, Phytogenic - isolation & purification</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>ARNICA</topic><topic>ARNIFOLINS</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Ehrlich Tumor - drug therapy</topic><topic>CHAMISSONOLIDES</topic><topic>CHEMICAL STRUCTURE</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Computer Simulation</topic><topic>CYTOTOXIC COMPOUNDS</topic><topic>DRUG PLANTS</topic><topic>Drug Screening Assays, Antitumor</topic><topic>ESPECTROMETRIA</topic><topic>ESTRUCTURA QUIMICA</topic><topic>EXTRACTOS VEGETALES</topic><topic>EXTRAIT D'ORIGINE VEGETALE</topic><topic>General aspects</topic><topic>General pharmacology</topic><topic>HELENALINS</topic><topic>LACTONAS</topic><topic>LACTONE</topic><topic>LACTONES</topic><topic>Lactones - isolation & purification</topic><topic>Lactones - pharmacology</topic><topic>Medical sciences</topic><topic>MEXICANINS I</topic><topic>Mice</topic><topic>Models, Structural</topic><topic>Molecular Conformation</topic><topic>PHARMACEUTICAL PRODUCTS</topic><topic>Pharmacognosy. Homeopathy. Health food</topic><topic>Pharmacology. Drug treatments</topic><topic>PLANT EXTRACTS</topic><topic>PLANTAS MEDICINALES</topic><topic>PLANTE MEDICINALE</topic><topic>Sesquiterpenes - isolation & purification</topic><topic>Sesquiterpenes - pharmacology</topic><topic>SESQUITERPENOIDE</topic><topic>SESQUITERPENOIDS</topic><topic>SESQUITERPENOS</topic><topic>SPECTRAL ANALYSIS</topic><topic>SPECTROMETRIE</topic><topic>SPECTROMETRY</topic><topic>STRUCTURE ACTIVITY RELATIONSHIPS</topic><topic>STRUCTURE CHIMIQUE</topic><topic>Structure-Activity Relationship</topic><topic>SUBSTANCE TOXIQUE</topic><topic>SUSTANCIAS TOXICAS</topic><topic>Tetrazolium Salts</topic><topic>Thiazoles</topic><topic>TOXIC SUBSTANCES</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beekman, Aäron C</creatorcontrib><creatorcontrib>Woerdenbag, Herman J</creatorcontrib><creatorcontrib>van Uden, Wim</creatorcontrib><creatorcontrib>Pras, Niesko</creatorcontrib><creatorcontrib>Konings, Antonius W. T</creatorcontrib><creatorcontrib>Wikström, Håkan V</creatorcontrib><creatorcontrib>Schmidt, Thomas J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of natural products (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beekman, Aäron C</au><au>Woerdenbag, Herman J</au><au>van Uden, Wim</au><au>Pras, Niesko</au><au>Konings, Antonius W. T</au><au>Wikström, Håkan V</au><au>Schmidt, Thomas J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones</atitle><jtitle>Journal of natural products (Washington, D.C.)</jtitle><addtitle>J. Nat. Prod</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>60</volume><issue>3</issue><spage>252</spage><epage>257</epage><pages>252-257</pages><issn>0163-3864</issn><eissn>1520-6025</eissn><coden>JNPRDF</coden><abstract>This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetate (2) and isobutyrate (3) were more toxic than helenalin itself (1). Esters with larger acyl groups (tiglate 4 and isovalerate 5) exhibited a decreased toxicity compared with the parent alcohol (1). Similar relationships were observed between the 6,8-diastereomer of helenalin, mexicanin I (6) and its acetate (7) and isovalerate (8). In contrast, cytotoxicity within a series of 11α,13-dihydrohelenalin esters (9−12) was shown to be directly related to the size and lipophilicity of the ester side chain, dihydrohelenalin (9) being the least toxic compound in this group. Investigation of several 2,3-dihydrohelenalin derivatives (13−21) with 2α-hydroxy-4-oxo- and 2α,4α-dihydroxy- or -O-acyl-substituted cyclopentane rings (arnifolins and chamissonolides, respectively), for which no pharmacological data have been reported so far, revealed further interesting influences of the substitution pattern on cytotoxicity. The results may be interpreted in terms of lipophilicity and steric effects on the accessibility of the reactive sites considered responsible for biological activity.</abstract><cop>Washington, DC</cop><cop>Glendale, AZ</cop><pub>American Chemical Society</pub><pmid>9090867</pmid><doi>10.1021/np960517h</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-3864 |
ispartof | Journal of natural products (Washington, D.C.), 1997-03, Vol.60 (3), p.252-257 |
issn | 0163-3864 1520-6025 |
language | eng |
recordid | cdi_crossref_primary_10_1021_np960517h |
source | MEDLINE; ACS Publications |
subjects | 11 ALPHA, 13-DIHYDROHELENALINS 2,3-DIHYDROHELENALINS Animals Antineoplastic agents Antineoplastic Agents, Phytogenic - isolation & purification Antineoplastic Agents, Phytogenic - pharmacology ARNICA ARNIFOLINS Biological and medical sciences Carcinoma, Ehrlich Tumor - drug therapy CHAMISSONOLIDES CHEMICAL STRUCTURE Chromatography, High Pressure Liquid Computer Simulation CYTOTOXIC COMPOUNDS DRUG PLANTS Drug Screening Assays, Antitumor ESPECTROMETRIA ESTRUCTURA QUIMICA EXTRACTOS VEGETALES EXTRAIT D'ORIGINE VEGETALE General aspects General pharmacology HELENALINS LACTONAS LACTONE LACTONES Lactones - isolation & purification Lactones - pharmacology Medical sciences MEXICANINS I Mice Models, Structural Molecular Conformation PHARMACEUTICAL PRODUCTS Pharmacognosy. Homeopathy. Health food Pharmacology. Drug treatments PLANT EXTRACTS PLANTAS MEDICINALES PLANTE MEDICINALE Sesquiterpenes - isolation & purification Sesquiterpenes - pharmacology SESQUITERPENOIDE SESQUITERPENOIDS SESQUITERPENOS SPECTRAL ANALYSIS SPECTROMETRIE SPECTROMETRY STRUCTURE ACTIVITY RELATIONSHIPS STRUCTURE CHIMIQUE Structure-Activity Relationship SUBSTANCE TOXIQUE SUSTANCIAS TOXICAS Tetrazolium Salts Thiazoles TOXIC SUBSTANCES Tumor Cells, Cultured |
title | Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%88%92Cytotoxicity%20Relationships%20of%20Some%20Helenanolide-Type%20Sesquiterpene%20Lactones&rft.jtitle=Journal%20of%20natural%20products%20(Washington,%20D.C.)&rft.au=Beekman,%20A%C3%A4ron%20C&rft.date=1997-03-01&rft.volume=60&rft.issue=3&rft.spage=252&rft.epage=257&rft.pages=252-257&rft.issn=0163-3864&rft.eissn=1520-6025&rft.coden=JNPRDF&rft_id=info:doi/10.1021/np960517h&rft_dat=%3Cistex_cross%3Eark_67375_TPS_XHZJ43LC_G%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/9090867&rfr_iscdi=true |