Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones

This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of natural products (Washington, D.C.) D.C.), 1997-03, Vol.60 (3), p.252-257
Hauptverfasser: Beekman, Aäron C, Woerdenbag, Herman J, van Uden, Wim, Pras, Niesko, Konings, Antonius W. T, Wikström, Håkan V, Schmidt, Thomas J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 3
container_start_page 252
container_title Journal of natural products (Washington, D.C.)
container_volume 60
creator Beekman, Aäron C
Woerdenbag, Herman J
van Uden, Wim
Pras, Niesko
Konings, Antonius W. T
Wikström, Håkan V
Schmidt, Thomas J
description This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetate (2) and isobutyrate (3) were more toxic than helenalin itself (1). Esters with larger acyl groups (tiglate 4 and isovalerate 5) exhibited a decreased toxicity compared with the parent alcohol (1). Similar relationships were observed between the 6,8-diastereomer of helenalin, mexicanin I (6) and its acetate (7) and isovalerate (8). In contrast, cytotoxicity within a series of 11α,13-dihydrohelenalin esters (9−12) was shown to be directly related to the size and lipophilicity of the ester side chain, dihydrohelenalin (9) being the least toxic compound in this group. Investigation of several 2,3-dihydrohelenalin derivatives (13−21) with 2α-hydroxy-4-oxo- and 2α,4α-dihydroxy- or -O-acyl-substituted cyclopentane rings (arnifolins and chamissonolides, respectively), for which no pharmacological data have been reported so far, revealed further interesting influences of the substitution pattern on cytotoxicity. The results may be interpreted in terms of lipophilicity and steric effects on the accessibility of the reactive sites considered responsible for biological activity.
doi_str_mv 10.1021/np960517h
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_np960517h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_XHZJ43LC_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-6be3c9d1a794034570d1472619f020742c24e6fdcb04e6c716895ecc665c8aee3</originalsourceid><addsrcrecordid>eNptkL2O1DAURi0EWmYXClokpBRsQRG4_ok9Llcj2AGNBCKzAtFYHueG9ZKJg-1IO29AzSPyJARlNBXVLc7Rp6tDyDMKrykw-qYftISKqtsHZEErBqUEVj0kC6CSl3wpxWNyntIdAHDQ1Rk506BhKdWCfKlzHF0eI_759Xt1yCGHe-98PhSfsbPZhz7d-iEVoS3qsMdijR32tg-db7DcHgYsakw_R58xDthjsbEuhx7TE_KotV3Cp8d7QW7evd2u1uXm4_X71dWmtEKyXModcqcbapUWwEWloKFCMUl1CwyUYI4JlG3jdjBdp6hc6gqdk7JyS4vIL8iredfFkFLE1gzR7208GArmXxtzajO5L2Z3GHd7bE7mMcbEXx65Tc52bbS98-mkMcklFXLSylnzKeP9Cdv4w0wjqjLbT7X5uv72QfDNylxP_vPZb20w9nucJm9qrZgGySd4OUPrkrkLY-ynWv_5_S-kuZEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones</title><source>MEDLINE</source><source>ACS Publications</source><creator>Beekman, Aäron C ; Woerdenbag, Herman J ; van Uden, Wim ; Pras, Niesko ; Konings, Antonius W. T ; Wikström, Håkan V ; Schmidt, Thomas J</creator><creatorcontrib>Beekman, Aäron C ; Woerdenbag, Herman J ; van Uden, Wim ; Pras, Niesko ; Konings, Antonius W. T ; Wikström, Håkan V ; Schmidt, Thomas J</creatorcontrib><description>This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetate (2) and isobutyrate (3) were more toxic than helenalin itself (1). Esters with larger acyl groups (tiglate 4 and isovalerate 5) exhibited a decreased toxicity compared with the parent alcohol (1). Similar relationships were observed between the 6,8-diastereomer of helenalin, mexicanin I (6) and its acetate (7) and isovalerate (8). In contrast, cytotoxicity within a series of 11α,13-dihydrohelenalin esters (9−12) was shown to be directly related to the size and lipophilicity of the ester side chain, dihydrohelenalin (9) being the least toxic compound in this group. Investigation of several 2,3-dihydrohelenalin derivatives (13−21) with 2α-hydroxy-4-oxo- and 2α,4α-dihydroxy- or -O-acyl-substituted cyclopentane rings (arnifolins and chamissonolides, respectively), for which no pharmacological data have been reported so far, revealed further interesting influences of the substitution pattern on cytotoxicity. The results may be interpreted in terms of lipophilicity and steric effects on the accessibility of the reactive sites considered responsible for biological activity.</description><identifier>ISSN: 0163-3864</identifier><identifier>EISSN: 1520-6025</identifier><identifier>DOI: 10.1021/np960517h</identifier><identifier>PMID: 9090867</identifier><identifier>CODEN: JNPRDF</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>11 ALPHA, 13-DIHYDROHELENALINS ; 2,3-DIHYDROHELENALINS ; Animals ; Antineoplastic agents ; Antineoplastic Agents, Phytogenic - isolation &amp; purification ; Antineoplastic Agents, Phytogenic - pharmacology ; ARNICA ; ARNIFOLINS ; Biological and medical sciences ; Carcinoma, Ehrlich Tumor - drug therapy ; CHAMISSONOLIDES ; CHEMICAL STRUCTURE ; Chromatography, High Pressure Liquid ; Computer Simulation ; CYTOTOXIC COMPOUNDS ; DRUG PLANTS ; Drug Screening Assays, Antitumor ; ESPECTROMETRIA ; ESTRUCTURA QUIMICA ; EXTRACTOS VEGETALES ; EXTRAIT D'ORIGINE VEGETALE ; General aspects ; General pharmacology ; HELENALINS ; LACTONAS ; LACTONE ; LACTONES ; Lactones - isolation &amp; purification ; Lactones - pharmacology ; Medical sciences ; MEXICANINS I ; Mice ; Models, Structural ; Molecular Conformation ; PHARMACEUTICAL PRODUCTS ; Pharmacognosy. Homeopathy. Health food ; Pharmacology. Drug treatments ; PLANT EXTRACTS ; PLANTAS MEDICINALES ; PLANTE MEDICINALE ; Sesquiterpenes - isolation &amp; purification ; Sesquiterpenes - pharmacology ; SESQUITERPENOIDE ; SESQUITERPENOIDS ; SESQUITERPENOS ; SPECTRAL ANALYSIS ; SPECTROMETRIE ; SPECTROMETRY ; STRUCTURE ACTIVITY RELATIONSHIPS ; STRUCTURE CHIMIQUE ; Structure-Activity Relationship ; SUBSTANCE TOXIQUE ; SUSTANCIAS TOXICAS ; Tetrazolium Salts ; Thiazoles ; TOXIC SUBSTANCES ; Tumor Cells, Cultured</subject><ispartof>Journal of natural products (Washington, D.C.), 1997-03, Vol.60 (3), p.252-257</ispartof><rights>Copyright © 1997 American Chemical Society and American Society of Pharmacognosy</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-6be3c9d1a794034570d1472619f020742c24e6fdcb04e6c716895ecc665c8aee3</citedby><cites>FETCH-LOGICAL-a462t-6be3c9d1a794034570d1472619f020742c24e6fdcb04e6c716895ecc665c8aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/np960517h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/np960517h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2636146$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9090867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beekman, Aäron C</creatorcontrib><creatorcontrib>Woerdenbag, Herman J</creatorcontrib><creatorcontrib>van Uden, Wim</creatorcontrib><creatorcontrib>Pras, Niesko</creatorcontrib><creatorcontrib>Konings, Antonius W. T</creatorcontrib><creatorcontrib>Wikström, Håkan V</creatorcontrib><creatorcontrib>Schmidt, Thomas J</creatorcontrib><title>Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones</title><title>Journal of natural products (Washington, D.C.)</title><addtitle>J. Nat. Prod</addtitle><description>This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetate (2) and isobutyrate (3) were more toxic than helenalin itself (1). Esters with larger acyl groups (tiglate 4 and isovalerate 5) exhibited a decreased toxicity compared with the parent alcohol (1). Similar relationships were observed between the 6,8-diastereomer of helenalin, mexicanin I (6) and its acetate (7) and isovalerate (8). In contrast, cytotoxicity within a series of 11α,13-dihydrohelenalin esters (9−12) was shown to be directly related to the size and lipophilicity of the ester side chain, dihydrohelenalin (9) being the least toxic compound in this group. Investigation of several 2,3-dihydrohelenalin derivatives (13−21) with 2α-hydroxy-4-oxo- and 2α,4α-dihydroxy- or -O-acyl-substituted cyclopentane rings (arnifolins and chamissonolides, respectively), for which no pharmacological data have been reported so far, revealed further interesting influences of the substitution pattern on cytotoxicity. The results may be interpreted in terms of lipophilicity and steric effects on the accessibility of the reactive sites considered responsible for biological activity.</description><subject>11 ALPHA, 13-DIHYDROHELENALINS</subject><subject>2,3-DIHYDROHELENALINS</subject><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Antineoplastic Agents, Phytogenic - isolation &amp; purification</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>ARNICA</subject><subject>ARNIFOLINS</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Ehrlich Tumor - drug therapy</subject><subject>CHAMISSONOLIDES</subject><subject>CHEMICAL STRUCTURE</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Computer Simulation</subject><subject>CYTOTOXIC COMPOUNDS</subject><subject>DRUG PLANTS</subject><subject>Drug Screening Assays, Antitumor</subject><subject>ESPECTROMETRIA</subject><subject>ESTRUCTURA QUIMICA</subject><subject>EXTRACTOS VEGETALES</subject><subject>EXTRAIT D'ORIGINE VEGETALE</subject><subject>General aspects</subject><subject>General pharmacology</subject><subject>HELENALINS</subject><subject>LACTONAS</subject><subject>LACTONE</subject><subject>LACTONES</subject><subject>Lactones - isolation &amp; purification</subject><subject>Lactones - pharmacology</subject><subject>Medical sciences</subject><subject>MEXICANINS I</subject><subject>Mice</subject><subject>Models, Structural</subject><subject>Molecular Conformation</subject><subject>PHARMACEUTICAL PRODUCTS</subject><subject>Pharmacognosy. Homeopathy. Health food</subject><subject>Pharmacology. Drug treatments</subject><subject>PLANT EXTRACTS</subject><subject>PLANTAS MEDICINALES</subject><subject>PLANTE MEDICINALE</subject><subject>Sesquiterpenes - isolation &amp; purification</subject><subject>Sesquiterpenes - pharmacology</subject><subject>SESQUITERPENOIDE</subject><subject>SESQUITERPENOIDS</subject><subject>SESQUITERPENOS</subject><subject>SPECTRAL ANALYSIS</subject><subject>SPECTROMETRIE</subject><subject>SPECTROMETRY</subject><subject>STRUCTURE ACTIVITY RELATIONSHIPS</subject><subject>STRUCTURE CHIMIQUE</subject><subject>Structure-Activity Relationship</subject><subject>SUBSTANCE TOXIQUE</subject><subject>SUSTANCIAS TOXICAS</subject><subject>Tetrazolium Salts</subject><subject>Thiazoles</subject><subject>TOXIC SUBSTANCES</subject><subject>Tumor Cells, Cultured</subject><issn>0163-3864</issn><issn>1520-6025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkL2O1DAURi0EWmYXClokpBRsQRG4_ok9Llcj2AGNBCKzAtFYHueG9ZKJg-1IO29AzSPyJARlNBXVLc7Rp6tDyDMKrykw-qYftISKqtsHZEErBqUEVj0kC6CSl3wpxWNyntIdAHDQ1Rk506BhKdWCfKlzHF0eI_759Xt1yCGHe-98PhSfsbPZhz7d-iEVoS3qsMdijR32tg-db7DcHgYsakw_R58xDthjsbEuhx7TE_KotV3Cp8d7QW7evd2u1uXm4_X71dWmtEKyXModcqcbapUWwEWloKFCMUl1CwyUYI4JlG3jdjBdp6hc6gqdk7JyS4vIL8iredfFkFLE1gzR7208GArmXxtzajO5L2Z3GHd7bE7mMcbEXx65Tc52bbS98-mkMcklFXLSylnzKeP9Cdv4w0wjqjLbT7X5uv72QfDNylxP_vPZb20w9nucJm9qrZgGySd4OUPrkrkLY-ynWv_5_S-kuZEn</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Beekman, Aäron C</creator><creator>Woerdenbag, Herman J</creator><creator>van Uden, Wim</creator><creator>Pras, Niesko</creator><creator>Konings, Antonius W. T</creator><creator>Wikström, Håkan V</creator><creator>Schmidt, Thomas J</creator><general>American Chemical Society</general><general>American Society of Pharmacognosy</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970301</creationdate><title>Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones</title><author>Beekman, Aäron C ; Woerdenbag, Herman J ; van Uden, Wim ; Pras, Niesko ; Konings, Antonius W. T ; Wikström, Håkan V ; Schmidt, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-6be3c9d1a794034570d1472619f020742c24e6fdcb04e6c716895ecc665c8aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>11 ALPHA, 13-DIHYDROHELENALINS</topic><topic>2,3-DIHYDROHELENALINS</topic><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Antineoplastic Agents, Phytogenic - isolation &amp; purification</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>ARNICA</topic><topic>ARNIFOLINS</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Ehrlich Tumor - drug therapy</topic><topic>CHAMISSONOLIDES</topic><topic>CHEMICAL STRUCTURE</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Computer Simulation</topic><topic>CYTOTOXIC COMPOUNDS</topic><topic>DRUG PLANTS</topic><topic>Drug Screening Assays, Antitumor</topic><topic>ESPECTROMETRIA</topic><topic>ESTRUCTURA QUIMICA</topic><topic>EXTRACTOS VEGETALES</topic><topic>EXTRAIT D'ORIGINE VEGETALE</topic><topic>General aspects</topic><topic>General pharmacology</topic><topic>HELENALINS</topic><topic>LACTONAS</topic><topic>LACTONE</topic><topic>LACTONES</topic><topic>Lactones - isolation &amp; purification</topic><topic>Lactones - pharmacology</topic><topic>Medical sciences</topic><topic>MEXICANINS I</topic><topic>Mice</topic><topic>Models, Structural</topic><topic>Molecular Conformation</topic><topic>PHARMACEUTICAL PRODUCTS</topic><topic>Pharmacognosy. Homeopathy. Health food</topic><topic>Pharmacology. Drug treatments</topic><topic>PLANT EXTRACTS</topic><topic>PLANTAS MEDICINALES</topic><topic>PLANTE MEDICINALE</topic><topic>Sesquiterpenes - isolation &amp; purification</topic><topic>Sesquiterpenes - pharmacology</topic><topic>SESQUITERPENOIDE</topic><topic>SESQUITERPENOIDS</topic><topic>SESQUITERPENOS</topic><topic>SPECTRAL ANALYSIS</topic><topic>SPECTROMETRIE</topic><topic>SPECTROMETRY</topic><topic>STRUCTURE ACTIVITY RELATIONSHIPS</topic><topic>STRUCTURE CHIMIQUE</topic><topic>Structure-Activity Relationship</topic><topic>SUBSTANCE TOXIQUE</topic><topic>SUSTANCIAS TOXICAS</topic><topic>Tetrazolium Salts</topic><topic>Thiazoles</topic><topic>TOXIC SUBSTANCES</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beekman, Aäron C</creatorcontrib><creatorcontrib>Woerdenbag, Herman J</creatorcontrib><creatorcontrib>van Uden, Wim</creatorcontrib><creatorcontrib>Pras, Niesko</creatorcontrib><creatorcontrib>Konings, Antonius W. T</creatorcontrib><creatorcontrib>Wikström, Håkan V</creatorcontrib><creatorcontrib>Schmidt, Thomas J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of natural products (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beekman, Aäron C</au><au>Woerdenbag, Herman J</au><au>van Uden, Wim</au><au>Pras, Niesko</au><au>Konings, Antonius W. T</au><au>Wikström, Håkan V</au><au>Schmidt, Thomas J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones</atitle><jtitle>Journal of natural products (Washington, D.C.)</jtitle><addtitle>J. Nat. Prod</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>60</volume><issue>3</issue><spage>252</spage><epage>257</epage><pages>252-257</pages><issn>0163-3864</issn><eissn>1520-6025</eissn><coden>JNPRDF</coden><abstract>This study deals with the cytotoxicity of helenanolide-type (10α-methylpseudoguaianolide) sesquiterpene lactones. We determined the influence of substitution patterns on the toxicity of 21 helenanolides to a cloned Ehrlich ascites tumor cell line, EN2. Within a series of helenalin esters, the acetate (2) and isobutyrate (3) were more toxic than helenalin itself (1). Esters with larger acyl groups (tiglate 4 and isovalerate 5) exhibited a decreased toxicity compared with the parent alcohol (1). Similar relationships were observed between the 6,8-diastereomer of helenalin, mexicanin I (6) and its acetate (7) and isovalerate (8). In contrast, cytotoxicity within a series of 11α,13-dihydrohelenalin esters (9−12) was shown to be directly related to the size and lipophilicity of the ester side chain, dihydrohelenalin (9) being the least toxic compound in this group. Investigation of several 2,3-dihydrohelenalin derivatives (13−21) with 2α-hydroxy-4-oxo- and 2α,4α-dihydroxy- or -O-acyl-substituted cyclopentane rings (arnifolins and chamissonolides, respectively), for which no pharmacological data have been reported so far, revealed further interesting influences of the substitution pattern on cytotoxicity. The results may be interpreted in terms of lipophilicity and steric effects on the accessibility of the reactive sites considered responsible for biological activity.</abstract><cop>Washington, DC</cop><cop>Glendale, AZ</cop><pub>American Chemical Society</pub><pmid>9090867</pmid><doi>10.1021/np960517h</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-3864
ispartof Journal of natural products (Washington, D.C.), 1997-03, Vol.60 (3), p.252-257
issn 0163-3864
1520-6025
language eng
recordid cdi_crossref_primary_10_1021_np960517h
source MEDLINE; ACS Publications
subjects 11 ALPHA, 13-DIHYDROHELENALINS
2,3-DIHYDROHELENALINS
Animals
Antineoplastic agents
Antineoplastic Agents, Phytogenic - isolation & purification
Antineoplastic Agents, Phytogenic - pharmacology
ARNICA
ARNIFOLINS
Biological and medical sciences
Carcinoma, Ehrlich Tumor - drug therapy
CHAMISSONOLIDES
CHEMICAL STRUCTURE
Chromatography, High Pressure Liquid
Computer Simulation
CYTOTOXIC COMPOUNDS
DRUG PLANTS
Drug Screening Assays, Antitumor
ESPECTROMETRIA
ESTRUCTURA QUIMICA
EXTRACTOS VEGETALES
EXTRAIT D'ORIGINE VEGETALE
General aspects
General pharmacology
HELENALINS
LACTONAS
LACTONE
LACTONES
Lactones - isolation & purification
Lactones - pharmacology
Medical sciences
MEXICANINS I
Mice
Models, Structural
Molecular Conformation
PHARMACEUTICAL PRODUCTS
Pharmacognosy. Homeopathy. Health food
Pharmacology. Drug treatments
PLANT EXTRACTS
PLANTAS MEDICINALES
PLANTE MEDICINALE
Sesquiterpenes - isolation & purification
Sesquiterpenes - pharmacology
SESQUITERPENOIDE
SESQUITERPENOIDS
SESQUITERPENOS
SPECTRAL ANALYSIS
SPECTROMETRIE
SPECTROMETRY
STRUCTURE ACTIVITY RELATIONSHIPS
STRUCTURE CHIMIQUE
Structure-Activity Relationship
SUBSTANCE TOXIQUE
SUSTANCIAS TOXICAS
Tetrazolium Salts
Thiazoles
TOXIC SUBSTANCES
Tumor Cells, Cultured
title Structure−Cytotoxicity Relationships of Some Helenanolide-Type Sesquiterpene Lactones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%88%92Cytotoxicity%20Relationships%20of%20Some%20Helenanolide-Type%20Sesquiterpene%20Lactones&rft.jtitle=Journal%20of%20natural%20products%20(Washington,%20D.C.)&rft.au=Beekman,%20A%C3%A4ron%20C&rft.date=1997-03-01&rft.volume=60&rft.issue=3&rft.spage=252&rft.epage=257&rft.pages=252-257&rft.issn=0163-3864&rft.eissn=1520-6025&rft.coden=JNPRDF&rft_id=info:doi/10.1021/np960517h&rft_dat=%3Cistex_cross%3Eark_67375_TPS_XHZJ43LC_G%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/9090867&rfr_iscdi=true