Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality

Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2010-09, Vol.4 (9), p.5301-5313
Hauptverfasser: Oh, Wan-Kyu, Kim, Sojin, Choi, Moonjung, Kim, Chanhoi, Jeong, Yoon Seon, Cho, Bo-Ram, Hahn, Ji-Sook, Jang, Jyongsik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5313
container_issue 9
container_start_page 5301
container_title ACS nano
container_volume 4
creator Oh, Wan-Kyu
Kim, Sojin
Choi, Moonjung
Kim, Chanhoi
Jeong, Yoon Seon
Cho, Bo-Ram
Hahn, Ji-Sook
Jang, Jyongsik
description Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by silane treatment. We systematically investigated cellular internalization, toxicity, and innate immune response of HNPs in human breast cancer (SK-BR-3) and mouse alveolar macrophage (J774A.1) cells. Size- and surface functionality-dependent cellular uptake of HNPs was investigated by fluorescence labeling (fluorescein isothiocyanate), inductively coupled plasma-emission spectroscopy, and ultrastructural resolution using transmission electron microscopy. Viability, reactive oxygen species, and apoptosis/necrosis of HNP-treated J774A.1 revealed the size-dependent phenomenon. Innate immune response of HNP-treated macrophages was measured by three cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α. Among the HNPs of different sizes, 50-nm HNPs demonstrated the highest toxic influence on macrophages. Among the HNPs with surface functionalities, cationic HNPs demonstrated the most toxic effect on J774A.1 and the highest uptake efficiency. The toxicity results of HNP-treated macrophages were consistent with the cellular internalization efficiency. These findings provide size- and surface functionality-dependent nanotoxicity and uptake of HNPs, and lead to HNPs for bioapplications such as drug delivery and imaging probe.
doi_str_mv 10.1021/nn100561e
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_nn100561e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b705412893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-fbeced2a7aa76ff409b4a5eb89672f897a393b03ce86e9b6bcd2af6dbd772c453</originalsourceid><addsrcrecordid>eNpt0L9OwzAQBnALgWgpDLwA8sKA1IKdNE4yQkVpJQQSfyS26OKcJYNrR7EjKE-AGHlEnoRAoRPT3fDTd7qPkH3OjjmL-Im1nLFEcNwgfZ7HYsQy8bC53hPeIzveP3YmzVKxTXoRE3mWJEmfvE_QmNZAQ-_rAE84pJNlcMG9aKnDckjBVnRuLQSk88WitUhv0NfOeqRO0VtttITPt487HcBqoDNnjHumV2BdDU3Q0qCnZ-Cxos52_BV_Em_bRoFEOm2tDNpZMN2xXbKlwHjc-50Dcj89v5vMRpfXF_PJ6eUIYj4OI1WixCqCFCAVSo1ZXo4hwTLLRRqpLE8hzuOSxRIzgXkpStlhJaqyStNIjpN4QI5WubJx3jeoirrRC2iWBWfFd5_Fus_OHqxs3ZYLrNbyr8AOHK4ASF88urbpfvH_BH0B_dGA3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality</title><source>ACS Publications</source><source>MEDLINE</source><creator>Oh, Wan-Kyu ; Kim, Sojin ; Choi, Moonjung ; Kim, Chanhoi ; Jeong, Yoon Seon ; Cho, Bo-Ram ; Hahn, Ji-Sook ; Jang, Jyongsik</creator><creatorcontrib>Oh, Wan-Kyu ; Kim, Sojin ; Choi, Moonjung ; Kim, Chanhoi ; Jeong, Yoon Seon ; Cho, Bo-Ram ; Hahn, Ji-Sook ; Jang, Jyongsik</creatorcontrib><description>Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by silane treatment. We systematically investigated cellular internalization, toxicity, and innate immune response of HNPs in human breast cancer (SK-BR-3) and mouse alveolar macrophage (J774A.1) cells. Size- and surface functionality-dependent cellular uptake of HNPs was investigated by fluorescence labeling (fluorescein isothiocyanate), inductively coupled plasma-emission spectroscopy, and ultrastructural resolution using transmission electron microscopy. Viability, reactive oxygen species, and apoptosis/necrosis of HNP-treated J774A.1 revealed the size-dependent phenomenon. Innate immune response of HNP-treated macrophages was measured by three cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α. Among the HNPs of different sizes, 50-nm HNPs demonstrated the highest toxic influence on macrophages. Among the HNPs with surface functionalities, cationic HNPs demonstrated the most toxic effect on J774A.1 and the highest uptake efficiency. The toxicity results of HNP-treated macrophages were consistent with the cellular internalization efficiency. These findings provide size- and surface functionality-dependent nanotoxicity and uptake of HNPs, and lead to HNPs for bioapplications such as drug delivery and imaging probe.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn100561e</identifier><identifier>PMID: 20698555</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenosine Triphosphate - biosynthesis ; Amines - chemistry ; Animals ; Apoptosis - drug effects ; Biological Transport ; Carboxylic Acids - chemistry ; Cell Line, Tumor ; Cell Survival - drug effects ; Humans ; Immunity, Innate - drug effects ; Macrophages - drug effects ; Macrophages - metabolism ; Methane - analogs &amp; derivatives ; Methane - chemistry ; Mice ; Nanocapsules - chemistry ; Nanocapsules - toxicity ; Nanotechnology - methods ; Necrosis - chemically induced ; Oxidative Stress - drug effects ; Particle Size ; Reactive Oxygen Species - metabolism ; Silicon Dioxide - chemistry ; Surface Properties ; Titanium - chemistry</subject><ispartof>ACS nano, 2010-09, Vol.4 (9), p.5301-5313</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-fbeced2a7aa76ff409b4a5eb89672f897a393b03ce86e9b6bcd2af6dbd772c453</citedby><cites>FETCH-LOGICAL-a314t-fbeced2a7aa76ff409b4a5eb89672f897a393b03ce86e9b6bcd2af6dbd772c453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn100561e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn100561e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20698555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Wan-Kyu</creatorcontrib><creatorcontrib>Kim, Sojin</creatorcontrib><creatorcontrib>Choi, Moonjung</creatorcontrib><creatorcontrib>Kim, Chanhoi</creatorcontrib><creatorcontrib>Jeong, Yoon Seon</creatorcontrib><creatorcontrib>Cho, Bo-Ram</creatorcontrib><creatorcontrib>Hahn, Ji-Sook</creatorcontrib><creatorcontrib>Jang, Jyongsik</creatorcontrib><title>Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by silane treatment. We systematically investigated cellular internalization, toxicity, and innate immune response of HNPs in human breast cancer (SK-BR-3) and mouse alveolar macrophage (J774A.1) cells. Size- and surface functionality-dependent cellular uptake of HNPs was investigated by fluorescence labeling (fluorescein isothiocyanate), inductively coupled plasma-emission spectroscopy, and ultrastructural resolution using transmission electron microscopy. Viability, reactive oxygen species, and apoptosis/necrosis of HNP-treated J774A.1 revealed the size-dependent phenomenon. Innate immune response of HNP-treated macrophages was measured by three cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α. Among the HNPs of different sizes, 50-nm HNPs demonstrated the highest toxic influence on macrophages. Among the HNPs with surface functionalities, cationic HNPs demonstrated the most toxic effect on J774A.1 and the highest uptake efficiency. The toxicity results of HNP-treated macrophages were consistent with the cellular internalization efficiency. These findings provide size- and surface functionality-dependent nanotoxicity and uptake of HNPs, and lead to HNPs for bioapplications such as drug delivery and imaging probe.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Amines - chemistry</subject><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Biological Transport</subject><subject>Carboxylic Acids - chemistry</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Humans</subject><subject>Immunity, Innate - drug effects</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Methane - analogs &amp; derivatives</subject><subject>Methane - chemistry</subject><subject>Mice</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - toxicity</subject><subject>Nanotechnology - methods</subject><subject>Necrosis - chemically induced</subject><subject>Oxidative Stress - drug effects</subject><subject>Particle Size</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Silicon Dioxide - chemistry</subject><subject>Surface Properties</subject><subject>Titanium - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0L9OwzAQBnALgWgpDLwA8sKA1IKdNE4yQkVpJQQSfyS26OKcJYNrR7EjKE-AGHlEnoRAoRPT3fDTd7qPkH3OjjmL-Im1nLFEcNwgfZ7HYsQy8bC53hPeIzveP3YmzVKxTXoRE3mWJEmfvE_QmNZAQ-_rAE84pJNlcMG9aKnDckjBVnRuLQSk88WitUhv0NfOeqRO0VtttITPt487HcBqoDNnjHumV2BdDU3Q0qCnZ-Cxos52_BV_Em_bRoFEOm2tDNpZMN2xXbKlwHjc-50Dcj89v5vMRpfXF_PJ6eUIYj4OI1WixCqCFCAVSo1ZXo4hwTLLRRqpLE8hzuOSxRIzgXkpStlhJaqyStNIjpN4QI5WubJx3jeoirrRC2iWBWfFd5_Fus_OHqxs3ZYLrNbyr8AOHK4ASF88urbpfvH_BH0B_dGA3Q</recordid><startdate>20100928</startdate><enddate>20100928</enddate><creator>Oh, Wan-Kyu</creator><creator>Kim, Sojin</creator><creator>Choi, Moonjung</creator><creator>Kim, Chanhoi</creator><creator>Jeong, Yoon Seon</creator><creator>Cho, Bo-Ram</creator><creator>Hahn, Ji-Sook</creator><creator>Jang, Jyongsik</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100928</creationdate><title>Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality</title><author>Oh, Wan-Kyu ; Kim, Sojin ; Choi, Moonjung ; Kim, Chanhoi ; Jeong, Yoon Seon ; Cho, Bo-Ram ; Hahn, Ji-Sook ; Jang, Jyongsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-fbeced2a7aa76ff409b4a5eb89672f897a393b03ce86e9b6bcd2af6dbd772c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Amines - chemistry</topic><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Biological Transport</topic><topic>Carboxylic Acids - chemistry</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Humans</topic><topic>Immunity, Innate - drug effects</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Methane - analogs &amp; derivatives</topic><topic>Methane - chemistry</topic><topic>Mice</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - toxicity</topic><topic>Nanotechnology - methods</topic><topic>Necrosis - chemically induced</topic><topic>Oxidative Stress - drug effects</topic><topic>Particle Size</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Silicon Dioxide - chemistry</topic><topic>Surface Properties</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Wan-Kyu</creatorcontrib><creatorcontrib>Kim, Sojin</creatorcontrib><creatorcontrib>Choi, Moonjung</creatorcontrib><creatorcontrib>Kim, Chanhoi</creatorcontrib><creatorcontrib>Jeong, Yoon Seon</creatorcontrib><creatorcontrib>Cho, Bo-Ram</creatorcontrib><creatorcontrib>Hahn, Ji-Sook</creatorcontrib><creatorcontrib>Jang, Jyongsik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Wan-Kyu</au><au>Kim, Sojin</au><au>Choi, Moonjung</au><au>Kim, Chanhoi</au><au>Jeong, Yoon Seon</au><au>Cho, Bo-Ram</au><au>Hahn, Ji-Sook</au><au>Jang, Jyongsik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-09-28</date><risdate>2010</risdate><volume>4</volume><issue>9</issue><spage>5301</spage><epage>5313</epage><pages>5301-5313</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by silane treatment. We systematically investigated cellular internalization, toxicity, and innate immune response of HNPs in human breast cancer (SK-BR-3) and mouse alveolar macrophage (J774A.1) cells. Size- and surface functionality-dependent cellular uptake of HNPs was investigated by fluorescence labeling (fluorescein isothiocyanate), inductively coupled plasma-emission spectroscopy, and ultrastructural resolution using transmission electron microscopy. Viability, reactive oxygen species, and apoptosis/necrosis of HNP-treated J774A.1 revealed the size-dependent phenomenon. Innate immune response of HNP-treated macrophages was measured by three cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α. Among the HNPs of different sizes, 50-nm HNPs demonstrated the highest toxic influence on macrophages. Among the HNPs with surface functionalities, cationic HNPs demonstrated the most toxic effect on J774A.1 and the highest uptake efficiency. The toxicity results of HNP-treated macrophages were consistent with the cellular internalization efficiency. These findings provide size- and surface functionality-dependent nanotoxicity and uptake of HNPs, and lead to HNPs for bioapplications such as drug delivery and imaging probe.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20698555</pmid><doi>10.1021/nn100561e</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2010-09, Vol.4 (9), p.5301-5313
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_nn100561e
source ACS Publications; MEDLINE
subjects Adenosine Triphosphate - biosynthesis
Amines - chemistry
Animals
Apoptosis - drug effects
Biological Transport
Carboxylic Acids - chemistry
Cell Line, Tumor
Cell Survival - drug effects
Humans
Immunity, Innate - drug effects
Macrophages - drug effects
Macrophages - metabolism
Methane - analogs & derivatives
Methane - chemistry
Mice
Nanocapsules - chemistry
Nanocapsules - toxicity
Nanotechnology - methods
Necrosis - chemically induced
Oxidative Stress - drug effects
Particle Size
Reactive Oxygen Species - metabolism
Silicon Dioxide - chemistry
Surface Properties
Titanium - chemistry
title Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Uptake,%20Cytotoxicity,%20and%20Innate%20Immune%20Response%20of%20Silica%E2%88%92Titania%20Hollow%20Nanoparticles%20Based%20on%20Size%20and%20Surface%20Functionality&rft.jtitle=ACS%20nano&rft.au=Oh,%20Wan-Kyu&rft.date=2010-09-28&rft.volume=4&rft.issue=9&rft.spage=5301&rft.epage=5313&rft.pages=5301-5313&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn100561e&rft_dat=%3Cacs_cross%3Eb705412893%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20698555&rfr_iscdi=true