Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality
Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by s...
Gespeichert in:
Veröffentlicht in: | ACS nano 2010-09, Vol.4 (9), p.5301-5313 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5313 |
---|---|
container_issue | 9 |
container_start_page | 5301 |
container_title | ACS nano |
container_volume | 4 |
creator | Oh, Wan-Kyu Kim, Sojin Choi, Moonjung Kim, Chanhoi Jeong, Yoon Seon Cho, Bo-Ram Hahn, Ji-Sook Jang, Jyongsik |
description | Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by silane treatment. We systematically investigated cellular internalization, toxicity, and innate immune response of HNPs in human breast cancer (SK-BR-3) and mouse alveolar macrophage (J774A.1) cells. Size- and surface functionality-dependent cellular uptake of HNPs was investigated by fluorescence labeling (fluorescein isothiocyanate), inductively coupled plasma-emission spectroscopy, and ultrastructural resolution using transmission electron microscopy. Viability, reactive oxygen species, and apoptosis/necrosis of HNP-treated J774A.1 revealed the size-dependent phenomenon. Innate immune response of HNP-treated macrophages was measured by three cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α. Among the HNPs of different sizes, 50-nm HNPs demonstrated the highest toxic influence on macrophages. Among the HNPs with surface functionalities, cationic HNPs demonstrated the most toxic effect on J774A.1 and the highest uptake efficiency. The toxicity results of HNP-treated macrophages were consistent with the cellular internalization efficiency. These findings provide size- and surface functionality-dependent nanotoxicity and uptake of HNPs, and lead to HNPs for bioapplications such as drug delivery and imaging probe. |
doi_str_mv | 10.1021/nn100561e |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_nn100561e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b705412893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-fbeced2a7aa76ff409b4a5eb89672f897a393b03ce86e9b6bcd2af6dbd772c453</originalsourceid><addsrcrecordid>eNpt0L9OwzAQBnALgWgpDLwA8sKA1IKdNE4yQkVpJQQSfyS26OKcJYNrR7EjKE-AGHlEnoRAoRPT3fDTd7qPkH3OjjmL-Im1nLFEcNwgfZ7HYsQy8bC53hPeIzveP3YmzVKxTXoRE3mWJEmfvE_QmNZAQ-_rAE84pJNlcMG9aKnDckjBVnRuLQSk88WitUhv0NfOeqRO0VtttITPt487HcBqoDNnjHumV2BdDU3Q0qCnZ-Cxos52_BV_Em_bRoFEOm2tDNpZMN2xXbKlwHjc-50Dcj89v5vMRpfXF_PJ6eUIYj4OI1WixCqCFCAVSo1ZXo4hwTLLRRqpLE8hzuOSxRIzgXkpStlhJaqyStNIjpN4QI5WubJx3jeoirrRC2iWBWfFd5_Fus_OHqxs3ZYLrNbyr8AOHK4ASF88urbpfvH_BH0B_dGA3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality</title><source>ACS Publications</source><source>MEDLINE</source><creator>Oh, Wan-Kyu ; Kim, Sojin ; Choi, Moonjung ; Kim, Chanhoi ; Jeong, Yoon Seon ; Cho, Bo-Ram ; Hahn, Ji-Sook ; Jang, Jyongsik</creator><creatorcontrib>Oh, Wan-Kyu ; Kim, Sojin ; Choi, Moonjung ; Kim, Chanhoi ; Jeong, Yoon Seon ; Cho, Bo-Ram ; Hahn, Ji-Sook ; Jang, Jyongsik</creatorcontrib><description>Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by silane treatment. We systematically investigated cellular internalization, toxicity, and innate immune response of HNPs in human breast cancer (SK-BR-3) and mouse alveolar macrophage (J774A.1) cells. Size- and surface functionality-dependent cellular uptake of HNPs was investigated by fluorescence labeling (fluorescein isothiocyanate), inductively coupled plasma-emission spectroscopy, and ultrastructural resolution using transmission electron microscopy. Viability, reactive oxygen species, and apoptosis/necrosis of HNP-treated J774A.1 revealed the size-dependent phenomenon. Innate immune response of HNP-treated macrophages was measured by three cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α. Among the HNPs of different sizes, 50-nm HNPs demonstrated the highest toxic influence on macrophages. Among the HNPs with surface functionalities, cationic HNPs demonstrated the most toxic effect on J774A.1 and the highest uptake efficiency. The toxicity results of HNP-treated macrophages were consistent with the cellular internalization efficiency. These findings provide size- and surface functionality-dependent nanotoxicity and uptake of HNPs, and lead to HNPs for bioapplications such as drug delivery and imaging probe.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn100561e</identifier><identifier>PMID: 20698555</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenosine Triphosphate - biosynthesis ; Amines - chemistry ; Animals ; Apoptosis - drug effects ; Biological Transport ; Carboxylic Acids - chemistry ; Cell Line, Tumor ; Cell Survival - drug effects ; Humans ; Immunity, Innate - drug effects ; Macrophages - drug effects ; Macrophages - metabolism ; Methane - analogs & derivatives ; Methane - chemistry ; Mice ; Nanocapsules - chemistry ; Nanocapsules - toxicity ; Nanotechnology - methods ; Necrosis - chemically induced ; Oxidative Stress - drug effects ; Particle Size ; Reactive Oxygen Species - metabolism ; Silicon Dioxide - chemistry ; Surface Properties ; Titanium - chemistry</subject><ispartof>ACS nano, 2010-09, Vol.4 (9), p.5301-5313</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-fbeced2a7aa76ff409b4a5eb89672f897a393b03ce86e9b6bcd2af6dbd772c453</citedby><cites>FETCH-LOGICAL-a314t-fbeced2a7aa76ff409b4a5eb89672f897a393b03ce86e9b6bcd2af6dbd772c453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn100561e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn100561e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20698555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Wan-Kyu</creatorcontrib><creatorcontrib>Kim, Sojin</creatorcontrib><creatorcontrib>Choi, Moonjung</creatorcontrib><creatorcontrib>Kim, Chanhoi</creatorcontrib><creatorcontrib>Jeong, Yoon Seon</creatorcontrib><creatorcontrib>Cho, Bo-Ram</creatorcontrib><creatorcontrib>Hahn, Ji-Sook</creatorcontrib><creatorcontrib>Jang, Jyongsik</creatorcontrib><title>Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by silane treatment. We systematically investigated cellular internalization, toxicity, and innate immune response of HNPs in human breast cancer (SK-BR-3) and mouse alveolar macrophage (J774A.1) cells. Size- and surface functionality-dependent cellular uptake of HNPs was investigated by fluorescence labeling (fluorescein isothiocyanate), inductively coupled plasma-emission spectroscopy, and ultrastructural resolution using transmission electron microscopy. Viability, reactive oxygen species, and apoptosis/necrosis of HNP-treated J774A.1 revealed the size-dependent phenomenon. Innate immune response of HNP-treated macrophages was measured by three cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α. Among the HNPs of different sizes, 50-nm HNPs demonstrated the highest toxic influence on macrophages. Among the HNPs with surface functionalities, cationic HNPs demonstrated the most toxic effect on J774A.1 and the highest uptake efficiency. The toxicity results of HNP-treated macrophages were consistent with the cellular internalization efficiency. These findings provide size- and surface functionality-dependent nanotoxicity and uptake of HNPs, and lead to HNPs for bioapplications such as drug delivery and imaging probe.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Amines - chemistry</subject><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Biological Transport</subject><subject>Carboxylic Acids - chemistry</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Humans</subject><subject>Immunity, Innate - drug effects</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Methane - analogs & derivatives</subject><subject>Methane - chemistry</subject><subject>Mice</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - toxicity</subject><subject>Nanotechnology - methods</subject><subject>Necrosis - chemically induced</subject><subject>Oxidative Stress - drug effects</subject><subject>Particle Size</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Silicon Dioxide - chemistry</subject><subject>Surface Properties</subject><subject>Titanium - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0L9OwzAQBnALgWgpDLwA8sKA1IKdNE4yQkVpJQQSfyS26OKcJYNrR7EjKE-AGHlEnoRAoRPT3fDTd7qPkH3OjjmL-Im1nLFEcNwgfZ7HYsQy8bC53hPeIzveP3YmzVKxTXoRE3mWJEmfvE_QmNZAQ-_rAE84pJNlcMG9aKnDckjBVnRuLQSk88WitUhv0NfOeqRO0VtttITPt487HcBqoDNnjHumV2BdDU3Q0qCnZ-Cxos52_BV_Em_bRoFEOm2tDNpZMN2xXbKlwHjc-50Dcj89v5vMRpfXF_PJ6eUIYj4OI1WixCqCFCAVSo1ZXo4hwTLLRRqpLE8hzuOSxRIzgXkpStlhJaqyStNIjpN4QI5WubJx3jeoirrRC2iWBWfFd5_Fus_OHqxs3ZYLrNbyr8AOHK4ASF88urbpfvH_BH0B_dGA3Q</recordid><startdate>20100928</startdate><enddate>20100928</enddate><creator>Oh, Wan-Kyu</creator><creator>Kim, Sojin</creator><creator>Choi, Moonjung</creator><creator>Kim, Chanhoi</creator><creator>Jeong, Yoon Seon</creator><creator>Cho, Bo-Ram</creator><creator>Hahn, Ji-Sook</creator><creator>Jang, Jyongsik</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100928</creationdate><title>Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality</title><author>Oh, Wan-Kyu ; Kim, Sojin ; Choi, Moonjung ; Kim, Chanhoi ; Jeong, Yoon Seon ; Cho, Bo-Ram ; Hahn, Ji-Sook ; Jang, Jyongsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-fbeced2a7aa76ff409b4a5eb89672f897a393b03ce86e9b6bcd2af6dbd772c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Amines - chemistry</topic><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Biological Transport</topic><topic>Carboxylic Acids - chemistry</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Humans</topic><topic>Immunity, Innate - drug effects</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Methane - analogs & derivatives</topic><topic>Methane - chemistry</topic><topic>Mice</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - toxicity</topic><topic>Nanotechnology - methods</topic><topic>Necrosis - chemically induced</topic><topic>Oxidative Stress - drug effects</topic><topic>Particle Size</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Silicon Dioxide - chemistry</topic><topic>Surface Properties</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Wan-Kyu</creatorcontrib><creatorcontrib>Kim, Sojin</creatorcontrib><creatorcontrib>Choi, Moonjung</creatorcontrib><creatorcontrib>Kim, Chanhoi</creatorcontrib><creatorcontrib>Jeong, Yoon Seon</creatorcontrib><creatorcontrib>Cho, Bo-Ram</creatorcontrib><creatorcontrib>Hahn, Ji-Sook</creatorcontrib><creatorcontrib>Jang, Jyongsik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Wan-Kyu</au><au>Kim, Sojin</au><au>Choi, Moonjung</au><au>Kim, Chanhoi</au><au>Jeong, Yoon Seon</au><au>Cho, Bo-Ram</au><au>Hahn, Ji-Sook</au><au>Jang, Jyongsik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-09-28</date><risdate>2010</risdate><volume>4</volume><issue>9</issue><spage>5301</spage><epage>5313</epage><pages>5301-5313</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Silica−titania hollow nanoparticles (HNPs) with uniform diameters of 25, 50, 75, 100, and 125 nm were fabricated by dissolution and redeposition method in order to evaluate size dependent cellular response. Surface-modified HNPs with cationic, anionic, and neutral functional group were prepared by silane treatment. We systematically investigated cellular internalization, toxicity, and innate immune response of HNPs in human breast cancer (SK-BR-3) and mouse alveolar macrophage (J774A.1) cells. Size- and surface functionality-dependent cellular uptake of HNPs was investigated by fluorescence labeling (fluorescein isothiocyanate), inductively coupled plasma-emission spectroscopy, and ultrastructural resolution using transmission electron microscopy. Viability, reactive oxygen species, and apoptosis/necrosis of HNP-treated J774A.1 revealed the size-dependent phenomenon. Innate immune response of HNP-treated macrophages was measured by three cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α. Among the HNPs of different sizes, 50-nm HNPs demonstrated the highest toxic influence on macrophages. Among the HNPs with surface functionalities, cationic HNPs demonstrated the most toxic effect on J774A.1 and the highest uptake efficiency. The toxicity results of HNP-treated macrophages were consistent with the cellular internalization efficiency. These findings provide size- and surface functionality-dependent nanotoxicity and uptake of HNPs, and lead to HNPs for bioapplications such as drug delivery and imaging probe.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20698555</pmid><doi>10.1021/nn100561e</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2010-09, Vol.4 (9), p.5301-5313 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_crossref_primary_10_1021_nn100561e |
source | ACS Publications; MEDLINE |
subjects | Adenosine Triphosphate - biosynthesis Amines - chemistry Animals Apoptosis - drug effects Biological Transport Carboxylic Acids - chemistry Cell Line, Tumor Cell Survival - drug effects Humans Immunity, Innate - drug effects Macrophages - drug effects Macrophages - metabolism Methane - analogs & derivatives Methane - chemistry Mice Nanocapsules - chemistry Nanocapsules - toxicity Nanotechnology - methods Necrosis - chemically induced Oxidative Stress - drug effects Particle Size Reactive Oxygen Species - metabolism Silicon Dioxide - chemistry Surface Properties Titanium - chemistry |
title | Cellular Uptake, Cytotoxicity, and Innate Immune Response of Silica−Titania Hollow Nanoparticles Based on Size and Surface Functionality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Uptake,%20Cytotoxicity,%20and%20Innate%20Immune%20Response%20of%20Silica%E2%88%92Titania%20Hollow%20Nanoparticles%20Based%20on%20Size%20and%20Surface%20Functionality&rft.jtitle=ACS%20nano&rft.au=Oh,%20Wan-Kyu&rft.date=2010-09-28&rft.volume=4&rft.issue=9&rft.spage=5301&rft.epage=5313&rft.pages=5301-5313&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn100561e&rft_dat=%3Cacs_cross%3Eb705412893%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20698555&rfr_iscdi=true |