Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking

To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-02, Vol.15 (2), p.1349-1355
Hauptverfasser: Yang, Haoran, Bahk, Je-Hyeong, Day, Tristan, Mohammed, Amr M. S, Snyder, G. Jeffrey, Shakouri, Ali, Wu, Yue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1355
container_issue 2
container_start_page 1349
container_title Nano letters
container_volume 15
creator Yang, Haoran
Bahk, Je-Hyeong
Day, Tristan
Mohammed, Amr M. S
Snyder, G. Jeffrey
Shakouri, Ali
Wu, Yue
description To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride–silver telluride (PbTe–Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe–Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe–Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe–Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.
doi_str_mv 10.1021/nl504624r
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_nl504624r</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c059814886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-12880956fc7cbe0d8be592a0fd3f81b86bedf03ebf25ccf72f7328d4fdcb0de23</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqUw8AeQFwaGgOMkjTPSqlCk8jGUOXKcc-s2iaOzI1R-PakKnZjupHvu1auHkOuQ3YeMhw9NlbB4zGM8IcMwiVgwzjJ-etxFPCAXzm0YY1mUsHMy4EmSxmkqhuR71qxlo6CkyzVgbaEC5dEo-oG2BfQGHDUNnXTVlr7Jxn4ZBDoHD2idx075DiGYSNcH7M_K1q11xvdffo22W63pq2ksGr-jU4loAOmksmprmtUlOdOycnD1O0fk82m2nM6Dxfvzy_RxEchIhD4IuRAsS8ZapaoAVooCkoxLpstIi7AQ4wJKzSIoNE-U0inXacRFGetSFawEHo3I3SFX9Z0dgs5bNLXEXR6yfO8vP_rr2ZsD23ZFDeWR_BPWA7cHQCqXb2yHTV_9n6AfZA97hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking</title><source>American Chemical Society Journals</source><creator>Yang, Haoran ; Bahk, Je-Hyeong ; Day, Tristan ; Mohammed, Amr M. S ; Snyder, G. Jeffrey ; Shakouri, Ali ; Wu, Yue</creator><creatorcontrib>Yang, Haoran ; Bahk, Je-Hyeong ; Day, Tristan ; Mohammed, Amr M. S ; Snyder, G. Jeffrey ; Shakouri, Ali ; Wu, Yue</creatorcontrib><description>To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride–silver telluride (PbTe–Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe–Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe–Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe–Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl504624r</identifier><identifier>PMID: 25574778</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2015-02, Vol.15 (2), p.1349-1355</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-12880956fc7cbe0d8be592a0fd3f81b86bedf03ebf25ccf72f7328d4fdcb0de23</citedby><cites>FETCH-LOGICAL-a381t-12880956fc7cbe0d8be592a0fd3f81b86bedf03ebf25ccf72f7328d4fdcb0de23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl504624r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl504624r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25574778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Haoran</creatorcontrib><creatorcontrib>Bahk, Je-Hyeong</creatorcontrib><creatorcontrib>Day, Tristan</creatorcontrib><creatorcontrib>Mohammed, Amr M. S</creatorcontrib><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Shakouri, Ali</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><title>Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride–silver telluride (PbTe–Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe–Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe–Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe–Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EoqUw8AeQFwaGgOMkjTPSqlCk8jGUOXKcc-s2iaOzI1R-PakKnZjupHvu1auHkOuQ3YeMhw9NlbB4zGM8IcMwiVgwzjJ-etxFPCAXzm0YY1mUsHMy4EmSxmkqhuR71qxlo6CkyzVgbaEC5dEo-oG2BfQGHDUNnXTVlr7Jxn4ZBDoHD2idx075DiGYSNcH7M_K1q11xvdffo22W63pq2ksGr-jU4loAOmksmprmtUlOdOycnD1O0fk82m2nM6Dxfvzy_RxEchIhD4IuRAsS8ZapaoAVooCkoxLpstIi7AQ4wJKzSIoNE-U0inXacRFGetSFawEHo3I3SFX9Z0dgs5bNLXEXR6yfO8vP_rr2ZsD23ZFDeWR_BPWA7cHQCqXb2yHTV_9n6AfZA97hg</recordid><startdate>20150211</startdate><enddate>20150211</enddate><creator>Yang, Haoran</creator><creator>Bahk, Je-Hyeong</creator><creator>Day, Tristan</creator><creator>Mohammed, Amr M. S</creator><creator>Snyder, G. Jeffrey</creator><creator>Shakouri, Ali</creator><creator>Wu, Yue</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150211</creationdate><title>Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking</title><author>Yang, Haoran ; Bahk, Je-Hyeong ; Day, Tristan ; Mohammed, Amr M. S ; Snyder, G. Jeffrey ; Shakouri, Ali ; Wu, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-12880956fc7cbe0d8be592a0fd3f81b86bedf03ebf25ccf72f7328d4fdcb0de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haoran</creatorcontrib><creatorcontrib>Bahk, Je-Hyeong</creatorcontrib><creatorcontrib>Day, Tristan</creatorcontrib><creatorcontrib>Mohammed, Amr M. S</creatorcontrib><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Shakouri, Ali</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haoran</au><au>Bahk, Je-Hyeong</au><au>Day, Tristan</au><au>Mohammed, Amr M. S</au><au>Snyder, G. Jeffrey</au><au>Shakouri, Ali</au><au>Wu, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-02-11</date><risdate>2015</risdate><volume>15</volume><issue>2</issue><spage>1349</spage><epage>1355</epage><pages>1349-1355</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride–silver telluride (PbTe–Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe–Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe–Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe–Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25574778</pmid><doi>10.1021/nl504624r</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2015-02, Vol.15 (2), p.1349-1355
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_nl504624r
source American Chemical Society Journals
title Enhanced Thermoelectric Properties in Bulk Nanowire Heterostructure-Based Nanocomposites through Minority Carrier Blocking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Thermoelectric%20Properties%20in%20Bulk%20Nanowire%20Heterostructure-Based%20Nanocomposites%20through%20Minority%20Carrier%20Blocking&rft.jtitle=Nano%20letters&rft.au=Yang,%20Haoran&rft.date=2015-02-11&rft.volume=15&rft.issue=2&rft.spage=1349&rft.epage=1355&rft.pages=1349-1355&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl504624r&rft_dat=%3Cacs_cross%3Ec059814886%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25574778&rfr_iscdi=true