Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures

In order to harvest the many promising properties of graphene in (electronic) applications, a technique is required to cut, shape, or sculpt the material on the nanoscale without inducing damage to its atomic structure, as this drastically influences the electronic properties of the nanostructure. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2011-06, Vol.11 (6), p.2247-2250
Hauptverfasser: Song, Bo, Schneider, Grégory F, Xu, Qiang, Pandraud, Grégory, Dekker, Cees, Zandbergen, Henny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2250
container_issue 6
container_start_page 2247
container_title Nano letters
container_volume 11
creator Song, Bo
Schneider, Grégory F
Xu, Qiang
Pandraud, Grégory
Dekker, Cees
Zandbergen, Henny
description In order to harvest the many promising properties of graphene in (electronic) applications, a technique is required to cut, shape, or sculpt the material on the nanoscale without inducing damage to its atomic structure, as this drastically influences the electronic properties of the nanostructure. Here, we reveal a temperature-dependent self-repair mechanism that allows near-damage-free atomic-scale sculpting of graphene using a focused electron beam. We demonstrate that by sculpting at temperatures above 600 °C, an intrinsic self-repair mechanism keeps the graphene in a single-crystalline state during cutting, even though the electron beam induces considerable damage. Self-repair is mediated by mobile carbon ad-atoms that constantly repair the defects caused by the electron beam. Our technique allows reproducible fabrication and simultaneous imaging of single-crystalline free-standing nanoribbons, nanotubes, nanopores, and single carbon chains.
doi_str_mv 10.1021/nl200369r
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_nl200369r</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g09872356</sourcerecordid><originalsourceid>FETCH-LOGICAL-a384t-819c25fa21fe0f61dae2cad2edeeefc866fe9a66ca0402686bf1855dde0ea6273</originalsourceid><addsrcrecordid>eNpt0D1PwzAQgGELgWgpDPwBlIWBwXB2EtcZS2kLUlWQCnN0dc6QKl-yk4F_T1BLuzD5hkd38svYtYB7AVI8VIUECFXiTthQxCFwlSTy9DDraMAuvN8CQBLGcM4GUiiIxgKG7G3S1mVu-NpgQcGsINO6uuKPhGWwNl3RtHn1GdQ2WBE6_kS2B3zuiIKFw-aLKgpWWNW-dZ1pO0f-kp1ZLDxd7d8R-5jP3qfPfPm6eJlOlhxDHbVci8TI2KIUlsAqkSFJg5mkjIis0UpZSlApgxCBVFptrNBxnGUEhEqOwxG72-01rvbekU0bl5fovlMB6W-V9FCltzc723SbkrKD_MvQg9s9QN-HsA4rk_uji2QkQq2PDo1Pt3Xnqv6L_xz8AWYkdro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures</title><source>ACS Publications</source><source>MEDLINE</source><creator>Song, Bo ; Schneider, Grégory F ; Xu, Qiang ; Pandraud, Grégory ; Dekker, Cees ; Zandbergen, Henny</creator><creatorcontrib>Song, Bo ; Schneider, Grégory F ; Xu, Qiang ; Pandraud, Grégory ; Dekker, Cees ; Zandbergen, Henny</creatorcontrib><description>In order to harvest the many promising properties of graphene in (electronic) applications, a technique is required to cut, shape, or sculpt the material on the nanoscale without inducing damage to its atomic structure, as this drastically influences the electronic properties of the nanostructure. Here, we reveal a temperature-dependent self-repair mechanism that allows near-damage-free atomic-scale sculpting of graphene using a focused electron beam. We demonstrate that by sculpting at temperatures above 600 °C, an intrinsic self-repair mechanism keeps the graphene in a single-crystalline state during cutting, even though the electron beam induces considerable damage. Self-repair is mediated by mobile carbon ad-atoms that constantly repair the defects caused by the electron beam. Our technique allows reproducible fabrication and simultaneous imaging of single-crystalline free-standing nanoribbons, nanotubes, nanopores, and single carbon chains.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl200369r</identifier><identifier>PMID: 21604710</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electrons ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphite - chemistry ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Nanostructures - chemistry ; Nanotubes ; Particle Size ; Physics ; Specific materials ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Temperature</subject><ispartof>Nano letters, 2011-06, Vol.11 (6), p.2247-2250</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a384t-819c25fa21fe0f61dae2cad2edeeefc866fe9a66ca0402686bf1855dde0ea6273</citedby><cites>FETCH-LOGICAL-a384t-819c25fa21fe0f61dae2cad2edeeefc866fe9a66ca0402686bf1855dde0ea6273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl200369r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl200369r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24241388$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21604710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Bo</creatorcontrib><creatorcontrib>Schneider, Grégory F</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Pandraud, Grégory</creatorcontrib><creatorcontrib>Dekker, Cees</creatorcontrib><creatorcontrib>Zandbergen, Henny</creatorcontrib><title>Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>In order to harvest the many promising properties of graphene in (electronic) applications, a technique is required to cut, shape, or sculpt the material on the nanoscale without inducing damage to its atomic structure, as this drastically influences the electronic properties of the nanostructure. Here, we reveal a temperature-dependent self-repair mechanism that allows near-damage-free atomic-scale sculpting of graphene using a focused electron beam. We demonstrate that by sculpting at temperatures above 600 °C, an intrinsic self-repair mechanism keeps the graphene in a single-crystalline state during cutting, even though the electron beam induces considerable damage. Self-repair is mediated by mobile carbon ad-atoms that constantly repair the defects caused by the electron beam. Our technique allows reproducible fabrication and simultaneous imaging of single-crystalline free-standing nanoribbons, nanotubes, nanopores, and single carbon chains.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphite - chemistry</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructures - chemistry</subject><subject>Nanotubes</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Temperature</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0D1PwzAQgGELgWgpDPwBlIWBwXB2EtcZS2kLUlWQCnN0dc6QKl-yk4F_T1BLuzD5hkd38svYtYB7AVI8VIUECFXiTthQxCFwlSTy9DDraMAuvN8CQBLGcM4GUiiIxgKG7G3S1mVu-NpgQcGsINO6uuKPhGWwNl3RtHn1GdQ2WBE6_kS2B3zuiIKFw-aLKgpWWNW-dZ1pO0f-kp1ZLDxd7d8R-5jP3qfPfPm6eJlOlhxDHbVci8TI2KIUlsAqkSFJg5mkjIis0UpZSlApgxCBVFptrNBxnGUEhEqOwxG72-01rvbekU0bl5fovlMB6W-V9FCltzc723SbkrKD_MvQg9s9QN-HsA4rk_uji2QkQq2PDo1Pt3Xnqv6L_xz8AWYkdro</recordid><startdate>20110608</startdate><enddate>20110608</enddate><creator>Song, Bo</creator><creator>Schneider, Grégory F</creator><creator>Xu, Qiang</creator><creator>Pandraud, Grégory</creator><creator>Dekker, Cees</creator><creator>Zandbergen, Henny</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110608</creationdate><title>Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures</title><author>Song, Bo ; Schneider, Grégory F ; Xu, Qiang ; Pandraud, Grégory ; Dekker, Cees ; Zandbergen, Henny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a384t-819c25fa21fe0f61dae2cad2edeeefc866fe9a66ca0402686bf1855dde0ea6273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphite - chemistry</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructures - chemistry</topic><topic>Nanotubes</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Bo</creatorcontrib><creatorcontrib>Schneider, Grégory F</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Pandraud, Grégory</creatorcontrib><creatorcontrib>Dekker, Cees</creatorcontrib><creatorcontrib>Zandbergen, Henny</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Bo</au><au>Schneider, Grégory F</au><au>Xu, Qiang</au><au>Pandraud, Grégory</au><au>Dekker, Cees</au><au>Zandbergen, Henny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-06-08</date><risdate>2011</risdate><volume>11</volume><issue>6</issue><spage>2247</spage><epage>2250</epage><pages>2247-2250</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>In order to harvest the many promising properties of graphene in (electronic) applications, a technique is required to cut, shape, or sculpt the material on the nanoscale without inducing damage to its atomic structure, as this drastically influences the electronic properties of the nanostructure. Here, we reveal a temperature-dependent self-repair mechanism that allows near-damage-free atomic-scale sculpting of graphene using a focused electron beam. We demonstrate that by sculpting at temperatures above 600 °C, an intrinsic self-repair mechanism keeps the graphene in a single-crystalline state during cutting, even though the electron beam induces considerable damage. Self-repair is mediated by mobile carbon ad-atoms that constantly repair the defects caused by the electron beam. Our technique allows reproducible fabrication and simultaneous imaging of single-crystalline free-standing nanoribbons, nanotubes, nanopores, and single carbon chains.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21604710</pmid><doi>10.1021/nl200369r</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2011-06, Vol.11 (6), p.2247-2250
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_nl200369r
source ACS Publications; MEDLINE
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electrons
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphite - chemistry
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Nanoscale materials and structures: fabrication and characterization
Nanostructures - chemistry
Nanotubes
Particle Size
Physics
Specific materials
Surface Properties
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Temperature
title Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-Scale%20Electron-Beam%20Sculpting%20of%20Near-Defect-Free%20Graphene%20Nanostructures&rft.jtitle=Nano%20letters&rft.au=Song,%20Bo&rft.date=2011-06-08&rft.volume=11&rft.issue=6&rft.spage=2247&rft.epage=2250&rft.pages=2247-2250&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl200369r&rft_dat=%3Cacs_cross%3Eg09872356%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21604710&rfr_iscdi=true