Excitation and Reemission of Molecules near Realistic Plasmonic Nanostructures

The enhancement of excitation and reemission of molecules in close proximity to plasmonic nanostructures is studied with special focus on the comparison between idealized and realistically shaped nanostructures. Numerical experiments show that for certain applications choosing a realistic geometry c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2011-02, Vol.11 (2), p.482-487
Hauptverfasser: Kern, Andreas M, Martin, Olivier J. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 487
container_issue 2
container_start_page 482
container_title Nano letters
container_volume 11
creator Kern, Andreas M
Martin, Olivier J. F
description The enhancement of excitation and reemission of molecules in close proximity to plasmonic nanostructures is studied with special focus on the comparison between idealized and realistically shaped nanostructures. Numerical experiments show that for certain applications choosing a realistic geometry closely resembling the actual nanostructure is imperative, an idealized simulation geometry yielding significantly different results. Finally, a link between excitation and reemission processes is formed via the theory of optical reciprocity, allowing a transparent view of the electromagnetic processes involved in plasmon-enhanced fluorescence and Raman-scattering.
doi_str_mv 10.1021/nl1032588
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_nl1032588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a436730315</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-ce81daf8a2b41eacabdb1fd27ba8532a710249e401888971cd9808bfe91287493</originalsourceid><addsrcrecordid>eNptkM1Lw0AQxRdRbK0e_AckFw8eovuVZvcopX5ArSJ6DpPNBrYku2UnAf3vm9LaXjzNG96PGd4j5JrRe0Y5e_ANo4JnSp2QMcsETada89ODVnJELhBXlFItMnpORpxxKjM5HZPl_Me4DjoXfAK-Sj6tbR3idg118hYaa_rGYuItxMGExmHnTPLRALbBD2oJPmAXe9P10eIlOauhQXu1nxPy_TT_mr2ki_fn19njIgUpsy41VrEKagW8lMyCgbIqWV3xvASVCQ75EEtqKylTSumcmUorqsraasZVLrWYkLvdXRMDYrR1sY6uhfhbMFpsOykOnQzszY5d92VrqwP5V8IA3O4BQANNHcEbh0dOaKGZVkcODBar0Ec_RPzn4QZ6RXVZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Excitation and Reemission of Molecules near Realistic Plasmonic Nanostructures</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kern, Andreas M ; Martin, Olivier J. F</creator><creatorcontrib>Kern, Andreas M ; Martin, Olivier J. F</creatorcontrib><description>The enhancement of excitation and reemission of molecules in close proximity to plasmonic nanostructures is studied with special focus on the comparison between idealized and realistically shaped nanostructures. Numerical experiments show that for certain applications choosing a realistic geometry closely resembling the actual nanostructure is imperative, an idealized simulation geometry yielding significantly different results. Finally, a link between excitation and reemission processes is formed via the theory of optical reciprocity, allowing a transparent view of the electromagnetic processes involved in plasmon-enhanced fluorescence and Raman-scattering.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl1032588</identifier><identifier>PMID: 21204546</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Computer Simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Light ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Models, Chemical ; Models, Molecular ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Physics ; Scattering, Radiation ; Surface and interface electron states ; Surface Plasmon Resonance - methods ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2011-02, Vol.11 (2), p.482-487</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-ce81daf8a2b41eacabdb1fd27ba8532a710249e401888971cd9808bfe91287493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl1032588$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl1032588$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23939198$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21204546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kern, Andreas M</creatorcontrib><creatorcontrib>Martin, Olivier J. F</creatorcontrib><title>Excitation and Reemission of Molecules near Realistic Plasmonic Nanostructures</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The enhancement of excitation and reemission of molecules in close proximity to plasmonic nanostructures is studied with special focus on the comparison between idealized and realistically shaped nanostructures. Numerical experiments show that for certain applications choosing a realistic geometry closely resembling the actual nanostructure is imperative, an idealized simulation geometry yielding significantly different results. Finally, a link between excitation and reemission processes is formed via the theory of optical reciprocity, allowing a transparent view of the electromagnetic processes involved in plasmon-enhanced fluorescence and Raman-scattering.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Computer Simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Light</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Scattering, Radiation</subject><subject>Surface and interface electron states</subject><subject>Surface Plasmon Resonance - methods</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1Lw0AQxRdRbK0e_AckFw8eovuVZvcopX5ArSJ6DpPNBrYku2UnAf3vm9LaXjzNG96PGd4j5JrRe0Y5e_ANo4JnSp2QMcsETada89ODVnJELhBXlFItMnpORpxxKjM5HZPl_Me4DjoXfAK-Sj6tbR3idg118hYaa_rGYuItxMGExmHnTPLRALbBD2oJPmAXe9P10eIlOauhQXu1nxPy_TT_mr2ki_fn19njIgUpsy41VrEKagW8lMyCgbIqWV3xvASVCQ75EEtqKylTSumcmUorqsraasZVLrWYkLvdXRMDYrR1sY6uhfhbMFpsOykOnQzszY5d92VrqwP5V8IA3O4BQANNHcEbh0dOaKGZVkcODBar0Ec_RPzn4QZ6RXVZ</recordid><startdate>20110209</startdate><enddate>20110209</enddate><creator>Kern, Andreas M</creator><creator>Martin, Olivier J. F</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110209</creationdate><title>Excitation and Reemission of Molecules near Realistic Plasmonic Nanostructures</title><author>Kern, Andreas M ; Martin, Olivier J. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-ce81daf8a2b41eacabdb1fd27ba8532a710249e401888971cd9808bfe91287493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Computer Simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Light</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Scattering, Radiation</topic><topic>Surface and interface electron states</topic><topic>Surface Plasmon Resonance - methods</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kern, Andreas M</creatorcontrib><creatorcontrib>Martin, Olivier J. F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kern, Andreas M</au><au>Martin, Olivier J. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitation and Reemission of Molecules near Realistic Plasmonic Nanostructures</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-02-09</date><risdate>2011</risdate><volume>11</volume><issue>2</issue><spage>482</spage><epage>487</epage><pages>482-487</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The enhancement of excitation and reemission of molecules in close proximity to plasmonic nanostructures is studied with special focus on the comparison between idealized and realistically shaped nanostructures. Numerical experiments show that for certain applications choosing a realistic geometry closely resembling the actual nanostructure is imperative, an idealized simulation geometry yielding significantly different results. Finally, a link between excitation and reemission processes is formed via the theory of optical reciprocity, allowing a transparent view of the electromagnetic processes involved in plasmon-enhanced fluorescence and Raman-scattering.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21204546</pmid><doi>10.1021/nl1032588</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2011-02, Vol.11 (2), p.482-487
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_nl1032588
source ACS Publications; MEDLINE
subjects Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Computer Simulation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Light
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Models, Chemical
Models, Molecular
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Physics
Scattering, Radiation
Surface and interface electron states
Surface Plasmon Resonance - methods
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Excitation and Reemission of Molecules near Realistic Plasmonic Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitation%20and%20Reemission%20of%20Molecules%20near%20Realistic%20Plasmonic%20Nanostructures&rft.jtitle=Nano%20letters&rft.au=Kern,%20Andreas%20M&rft.date=2011-02-09&rft.volume=11&rft.issue=2&rft.spage=482&rft.epage=487&rft.pages=482-487&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl1032588&rft_dat=%3Cacs_cross%3Ea436730315%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21204546&rfr_iscdi=true