Relaxation Processes in Nonlinear Optical Polymers: A Comparative Study
Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C < T g < 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic...
Gespeichert in:
Veröffentlicht in: | Macromolecules 1998-03, Vol.31 (6), p.1947-1957 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1957 |
---|---|
container_issue | 6 |
container_start_page | 1947 |
container_title | Macromolecules |
container_volume | 31 |
creator | Prêtre, Philippe Meier, Urs Stalder, Urs Bosshard, Christian Günter, Peter Kaatz, Philip Weder, Christoph Neuenschwander, Peter Suter, Ulrich W |
description | Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C < T g < 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic decay, dielectric relaxation, and differential scanning calorimetry measurements, and the results obtained have been compared with a variety of nonlinear optical polymer systems cited in the literature. The nonexponential relaxation in both the time and frequency domain was modeled by the Kohlrausch−Williams−Watts function whereas the nonlinear relaxational behavior of these polymers was modeled in terms of the Tool−Narayanaswamy description of the glassy state using the Adam−Gibbs expression for the relaxation time. This procedure allows for the nonlinear extension of the liquid equilibrium state behavior into and below the glass transition region with an accurate prediction of the relaxation times over more than 15 orders of magnitude in time. Time−temperature scaling of the relaxation times with respect to T g/T as the relevant scaling parameter is observed below the glass transition. The effect of annealing was investigated using differential scanning calorimetry with the result that a single set of parameters is sufficient to describe a wide range of thermal histories with as well as without annealing. Optimum annealing temperatures/annealing times for best orientational stability in NLO polymers were calculated according to the same relaxation scheme. |
doi_str_mv | 10.1021/ma9713623 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma9713623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_VQK7XN7P_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-3856e47069de48a46b601a44ac4fbf3ad3f93034b2ef31a8b014ee402c7ed2053</originalsourceid><addsrcrecordid>eNptkLtOw0AURFcIJEKg4A-2gILCsC97bbrI4h0lhgREt7q215KDX9p1UNzR8pt8CY6MUlFNcc_c0QxCp5RcUsLoVQmBpNxjfA-NqMuI4_rc3UcjQphwAhbIQ3Rk7YoQSl3BR-jxRRewgTavKxyZOtHWaovzCs_qqsgrDQbPmzZPoMBRXXSlNvb65-sbT3BYlw2Y3vmp8aJdp90xOsigsPrkT8fo9fZmGd470_ndQziZOsCZaB3uu54WknhBqoUPwos9QkEISEQWZxxSngWccBEznXEKfkyo0FoQlkidMuLyMboY_iamttboTDUmL8F0ihK1HUHtRujZs4FtwPYdMgNVktudgdFAUG-LOQOW21ZvdmcwH8qTXLpqGS3U2_OTfJ_JSIU9fz7wkFi1qtem6gv_E_8LGQ13Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relaxation Processes in Nonlinear Optical Polymers: A Comparative Study</title><source>American Chemical Society Journals</source><creator>Prêtre, Philippe ; Meier, Urs ; Stalder, Urs ; Bosshard, Christian ; Günter, Peter ; Kaatz, Philip ; Weder, Christoph ; Neuenschwander, Peter ; Suter, Ulrich W</creator><creatorcontrib>Prêtre, Philippe ; Meier, Urs ; Stalder, Urs ; Bosshard, Christian ; Günter, Peter ; Kaatz, Philip ; Weder, Christoph ; Neuenschwander, Peter ; Suter, Ulrich W</creatorcontrib><description>Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C < T g < 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic decay, dielectric relaxation, and differential scanning calorimetry measurements, and the results obtained have been compared with a variety of nonlinear optical polymer systems cited in the literature. The nonexponential relaxation in both the time and frequency domain was modeled by the Kohlrausch−Williams−Watts function whereas the nonlinear relaxational behavior of these polymers was modeled in terms of the Tool−Narayanaswamy description of the glassy state using the Adam−Gibbs expression for the relaxation time. This procedure allows for the nonlinear extension of the liquid equilibrium state behavior into and below the glass transition region with an accurate prediction of the relaxation times over more than 15 orders of magnitude in time. Time−temperature scaling of the relaxation times with respect to T g/T as the relevant scaling parameter is observed below the glass transition. The effect of annealing was investigated using differential scanning calorimetry with the result that a single set of parameters is sufficient to describe a wide range of thermal histories with as well as without annealing. Optimum annealing temperatures/annealing times for best orientational stability in NLO polymers were calculated according to the same relaxation scheme.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma9713623</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Electrical, magnetic and optical properties ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization</subject><ispartof>Macromolecules, 1998-03, Vol.31 (6), p.1947-1957</ispartof><rights>Copyright © 1998 American Chemical Society</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-3856e47069de48a46b601a44ac4fbf3ad3f93034b2ef31a8b014ee402c7ed2053</citedby><cites>FETCH-LOGICAL-a324t-3856e47069de48a46b601a44ac4fbf3ad3f93034b2ef31a8b014ee402c7ed2053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma9713623$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma9713623$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2194163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prêtre, Philippe</creatorcontrib><creatorcontrib>Meier, Urs</creatorcontrib><creatorcontrib>Stalder, Urs</creatorcontrib><creatorcontrib>Bosshard, Christian</creatorcontrib><creatorcontrib>Günter, Peter</creatorcontrib><creatorcontrib>Kaatz, Philip</creatorcontrib><creatorcontrib>Weder, Christoph</creatorcontrib><creatorcontrib>Neuenschwander, Peter</creatorcontrib><creatorcontrib>Suter, Ulrich W</creatorcontrib><title>Relaxation Processes in Nonlinear Optical Polymers: A Comparative Study</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C < T g < 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic decay, dielectric relaxation, and differential scanning calorimetry measurements, and the results obtained have been compared with a variety of nonlinear optical polymer systems cited in the literature. The nonexponential relaxation in both the time and frequency domain was modeled by the Kohlrausch−Williams−Watts function whereas the nonlinear relaxational behavior of these polymers was modeled in terms of the Tool−Narayanaswamy description of the glassy state using the Adam−Gibbs expression for the relaxation time. This procedure allows for the nonlinear extension of the liquid equilibrium state behavior into and below the glass transition region with an accurate prediction of the relaxation times over more than 15 orders of magnitude in time. Time−temperature scaling of the relaxation times with respect to T g/T as the relevant scaling parameter is observed below the glass transition. The effect of annealing was investigated using differential scanning calorimetry with the result that a single set of parameters is sufficient to describe a wide range of thermal histories with as well as without annealing. Optimum annealing temperatures/annealing times for best orientational stability in NLO polymers were calculated according to the same relaxation scheme.</description><subject>Applied sciences</subject><subject>Electrical, magnetic and optical properties</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNptkLtOw0AURFcIJEKg4A-2gILCsC97bbrI4h0lhgREt7q215KDX9p1UNzR8pt8CY6MUlFNcc_c0QxCp5RcUsLoVQmBpNxjfA-NqMuI4_rc3UcjQphwAhbIQ3Rk7YoQSl3BR-jxRRewgTavKxyZOtHWaovzCs_qqsgrDQbPmzZPoMBRXXSlNvb65-sbT3BYlw2Y3vmp8aJdp90xOsigsPrkT8fo9fZmGd470_ndQziZOsCZaB3uu54WknhBqoUPwos9QkEISEQWZxxSngWccBEznXEKfkyo0FoQlkidMuLyMboY_iamttboTDUmL8F0ihK1HUHtRujZs4FtwPYdMgNVktudgdFAUG-LOQOW21ZvdmcwH8qTXLpqGS3U2_OTfJ_JSIU9fz7wkFi1qtem6gv_E_8LGQ13Hg</recordid><startdate>19980324</startdate><enddate>19980324</enddate><creator>Prêtre, Philippe</creator><creator>Meier, Urs</creator><creator>Stalder, Urs</creator><creator>Bosshard, Christian</creator><creator>Günter, Peter</creator><creator>Kaatz, Philip</creator><creator>Weder, Christoph</creator><creator>Neuenschwander, Peter</creator><creator>Suter, Ulrich W</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980324</creationdate><title>Relaxation Processes in Nonlinear Optical Polymers: A Comparative Study</title><author>Prêtre, Philippe ; Meier, Urs ; Stalder, Urs ; Bosshard, Christian ; Günter, Peter ; Kaatz, Philip ; Weder, Christoph ; Neuenschwander, Peter ; Suter, Ulrich W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-3856e47069de48a46b601a44ac4fbf3ad3f93034b2ef31a8b014ee402c7ed2053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Electrical, magnetic and optical properties</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prêtre, Philippe</creatorcontrib><creatorcontrib>Meier, Urs</creatorcontrib><creatorcontrib>Stalder, Urs</creatorcontrib><creatorcontrib>Bosshard, Christian</creatorcontrib><creatorcontrib>Günter, Peter</creatorcontrib><creatorcontrib>Kaatz, Philip</creatorcontrib><creatorcontrib>Weder, Christoph</creatorcontrib><creatorcontrib>Neuenschwander, Peter</creatorcontrib><creatorcontrib>Suter, Ulrich W</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prêtre, Philippe</au><au>Meier, Urs</au><au>Stalder, Urs</au><au>Bosshard, Christian</au><au>Günter, Peter</au><au>Kaatz, Philip</au><au>Weder, Christoph</au><au>Neuenschwander, Peter</au><au>Suter, Ulrich W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation Processes in Nonlinear Optical Polymers: A Comparative Study</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>1998-03-24</date><risdate>1998</risdate><volume>31</volume><issue>6</issue><spage>1947</spage><epage>1957</epage><pages>1947-1957</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C < T g < 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic decay, dielectric relaxation, and differential scanning calorimetry measurements, and the results obtained have been compared with a variety of nonlinear optical polymer systems cited in the literature. The nonexponential relaxation in both the time and frequency domain was modeled by the Kohlrausch−Williams−Watts function whereas the nonlinear relaxational behavior of these polymers was modeled in terms of the Tool−Narayanaswamy description of the glassy state using the Adam−Gibbs expression for the relaxation time. This procedure allows for the nonlinear extension of the liquid equilibrium state behavior into and below the glass transition region with an accurate prediction of the relaxation times over more than 15 orders of magnitude in time. Time−temperature scaling of the relaxation times with respect to T g/T as the relevant scaling parameter is observed below the glass transition. The effect of annealing was investigated using differential scanning calorimetry with the result that a single set of parameters is sufficient to describe a wide range of thermal histories with as well as without annealing. Optimum annealing temperatures/annealing times for best orientational stability in NLO polymers were calculated according to the same relaxation scheme.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma9713623</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-9297 |
ispartof | Macromolecules, 1998-03, Vol.31 (6), p.1947-1957 |
issn | 0024-9297 1520-5835 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ma9713623 |
source | American Chemical Society Journals |
subjects | Applied sciences Electrical, magnetic and optical properties Exact sciences and technology Organic polymers Physicochemistry of polymers Properties and characterization |
title | Relaxation Processes in Nonlinear Optical Polymers: A Comparative Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20Processes%20in%20Nonlinear%20Optical%20Polymers:%E2%80%89%20A%20Comparative%20Study&rft.jtitle=Macromolecules&rft.au=Pr%C3%AAtre,%20Philippe&rft.date=1998-03-24&rft.volume=31&rft.issue=6&rft.spage=1947&rft.epage=1957&rft.pages=1947-1957&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma9713623&rft_dat=%3Cistex_cross%3Eark_67375_TPS_VQK7XN7P_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |