Relaxation Processes in Nonlinear Optical Polymers:  A Comparative Study

Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C < T g < 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 1998-03, Vol.31 (6), p.1947-1957
Hauptverfasser: Prêtre, Philippe, Meier, Urs, Stalder, Urs, Bosshard, Christian, Günter, Peter, Kaatz, Philip, Weder, Christoph, Neuenschwander, Peter, Suter, Ulrich W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1957
container_issue 6
container_start_page 1947
container_title Macromolecules
container_volume 31
creator Prêtre, Philippe
Meier, Urs
Stalder, Urs
Bosshard, Christian
Günter, Peter
Kaatz, Philip
Weder, Christoph
Neuenschwander, Peter
Suter, Ulrich W
description Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C < T g < 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic decay, dielectric relaxation, and differential scanning calorimetry measurements, and the results obtained have been compared with a variety of nonlinear optical polymer systems cited in the literature. The nonexponential relaxation in both the time and frequency domain was modeled by the Kohlrausch−Williams−Watts function whereas the nonlinear relaxational behavior of these polymers was modeled in terms of the Tool−Narayanaswamy description of the glassy state using the Adam−Gibbs expression for the relaxation time. This procedure allows for the nonlinear extension of the liquid equilibrium state behavior into and below the glass transition region with an accurate prediction of the relaxation times over more than 15 orders of magnitude in time. Time−temperature scaling of the relaxation times with respect to T g/T as the relevant scaling parameter is observed below the glass transition. The effect of annealing was investigated using differential scanning calorimetry with the result that a single set of parameters is sufficient to describe a wide range of thermal histories with as well as without annealing. Optimum annealing temperatures/annealing times for best orientational stability in NLO polymers were calculated according to the same relaxation scheme.
doi_str_mv 10.1021/ma9713623
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma9713623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_VQK7XN7P_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-3856e47069de48a46b601a44ac4fbf3ad3f93034b2ef31a8b014ee402c7ed2053</originalsourceid><addsrcrecordid>eNptkLtOw0AURFcIJEKg4A-2gILCsC97bbrI4h0lhgREt7q215KDX9p1UNzR8pt8CY6MUlFNcc_c0QxCp5RcUsLoVQmBpNxjfA-NqMuI4_rc3UcjQphwAhbIQ3Rk7YoQSl3BR-jxRRewgTavKxyZOtHWaovzCs_qqsgrDQbPmzZPoMBRXXSlNvb65-sbT3BYlw2Y3vmp8aJdp90xOsigsPrkT8fo9fZmGd470_ndQziZOsCZaB3uu54WknhBqoUPwos9QkEISEQWZxxSngWccBEznXEKfkyo0FoQlkidMuLyMboY_iamttboTDUmL8F0ihK1HUHtRujZs4FtwPYdMgNVktudgdFAUG-LOQOW21ZvdmcwH8qTXLpqGS3U2_OTfJ_JSIU9fz7wkFi1qtem6gv_E_8LGQ13Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relaxation Processes in Nonlinear Optical Polymers:  A Comparative Study</title><source>American Chemical Society Journals</source><creator>Prêtre, Philippe ; Meier, Urs ; Stalder, Urs ; Bosshard, Christian ; Günter, Peter ; Kaatz, Philip ; Weder, Christoph ; Neuenschwander, Peter ; Suter, Ulrich W</creator><creatorcontrib>Prêtre, Philippe ; Meier, Urs ; Stalder, Urs ; Bosshard, Christian ; Günter, Peter ; Kaatz, Philip ; Weder, Christoph ; Neuenschwander, Peter ; Suter, Ulrich W</creatorcontrib><description>Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C &lt; T g &lt; 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic decay, dielectric relaxation, and differential scanning calorimetry measurements, and the results obtained have been compared with a variety of nonlinear optical polymer systems cited in the literature. The nonexponential relaxation in both the time and frequency domain was modeled by the Kohlrausch−Williams−Watts function whereas the nonlinear relaxational behavior of these polymers was modeled in terms of the Tool−Narayanaswamy description of the glassy state using the Adam−Gibbs expression for the relaxation time. This procedure allows for the nonlinear extension of the liquid equilibrium state behavior into and below the glass transition region with an accurate prediction of the relaxation times over more than 15 orders of magnitude in time. Time−temperature scaling of the relaxation times with respect to T g/T as the relevant scaling parameter is observed below the glass transition. The effect of annealing was investigated using differential scanning calorimetry with the result that a single set of parameters is sufficient to describe a wide range of thermal histories with as well as without annealing. Optimum annealing temperatures/annealing times for best orientational stability in NLO polymers were calculated according to the same relaxation scheme.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma9713623</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Electrical, magnetic and optical properties ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization</subject><ispartof>Macromolecules, 1998-03, Vol.31 (6), p.1947-1957</ispartof><rights>Copyright © 1998 American Chemical Society</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-3856e47069de48a46b601a44ac4fbf3ad3f93034b2ef31a8b014ee402c7ed2053</citedby><cites>FETCH-LOGICAL-a324t-3856e47069de48a46b601a44ac4fbf3ad3f93034b2ef31a8b014ee402c7ed2053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma9713623$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma9713623$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2194163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prêtre, Philippe</creatorcontrib><creatorcontrib>Meier, Urs</creatorcontrib><creatorcontrib>Stalder, Urs</creatorcontrib><creatorcontrib>Bosshard, Christian</creatorcontrib><creatorcontrib>Günter, Peter</creatorcontrib><creatorcontrib>Kaatz, Philip</creatorcontrib><creatorcontrib>Weder, Christoph</creatorcontrib><creatorcontrib>Neuenschwander, Peter</creatorcontrib><creatorcontrib>Suter, Ulrich W</creatorcontrib><title>Relaxation Processes in Nonlinear Optical Polymers:  A Comparative Study</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C &lt; T g &lt; 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic decay, dielectric relaxation, and differential scanning calorimetry measurements, and the results obtained have been compared with a variety of nonlinear optical polymer systems cited in the literature. The nonexponential relaxation in both the time and frequency domain was modeled by the Kohlrausch−Williams−Watts function whereas the nonlinear relaxational behavior of these polymers was modeled in terms of the Tool−Narayanaswamy description of the glassy state using the Adam−Gibbs expression for the relaxation time. This procedure allows for the nonlinear extension of the liquid equilibrium state behavior into and below the glass transition region with an accurate prediction of the relaxation times over more than 15 orders of magnitude in time. Time−temperature scaling of the relaxation times with respect to T g/T as the relevant scaling parameter is observed below the glass transition. The effect of annealing was investigated using differential scanning calorimetry with the result that a single set of parameters is sufficient to describe a wide range of thermal histories with as well as without annealing. Optimum annealing temperatures/annealing times for best orientational stability in NLO polymers were calculated according to the same relaxation scheme.</description><subject>Applied sciences</subject><subject>Electrical, magnetic and optical properties</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNptkLtOw0AURFcIJEKg4A-2gILCsC97bbrI4h0lhgREt7q215KDX9p1UNzR8pt8CY6MUlFNcc_c0QxCp5RcUsLoVQmBpNxjfA-NqMuI4_rc3UcjQphwAhbIQ3Rk7YoQSl3BR-jxRRewgTavKxyZOtHWaovzCs_qqsgrDQbPmzZPoMBRXXSlNvb65-sbT3BYlw2Y3vmp8aJdp90xOsigsPrkT8fo9fZmGd470_ndQziZOsCZaB3uu54WknhBqoUPwos9QkEISEQWZxxSngWccBEznXEKfkyo0FoQlkidMuLyMboY_iamttboTDUmL8F0ihK1HUHtRujZs4FtwPYdMgNVktudgdFAUG-LOQOW21ZvdmcwH8qTXLpqGS3U2_OTfJ_JSIU9fz7wkFi1qtem6gv_E_8LGQ13Hg</recordid><startdate>19980324</startdate><enddate>19980324</enddate><creator>Prêtre, Philippe</creator><creator>Meier, Urs</creator><creator>Stalder, Urs</creator><creator>Bosshard, Christian</creator><creator>Günter, Peter</creator><creator>Kaatz, Philip</creator><creator>Weder, Christoph</creator><creator>Neuenschwander, Peter</creator><creator>Suter, Ulrich W</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980324</creationdate><title>Relaxation Processes in Nonlinear Optical Polymers:  A Comparative Study</title><author>Prêtre, Philippe ; Meier, Urs ; Stalder, Urs ; Bosshard, Christian ; Günter, Peter ; Kaatz, Philip ; Weder, Christoph ; Neuenschwander, Peter ; Suter, Ulrich W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-3856e47069de48a46b601a44ac4fbf3ad3f93034b2ef31a8b014ee402c7ed2053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Electrical, magnetic and optical properties</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prêtre, Philippe</creatorcontrib><creatorcontrib>Meier, Urs</creatorcontrib><creatorcontrib>Stalder, Urs</creatorcontrib><creatorcontrib>Bosshard, Christian</creatorcontrib><creatorcontrib>Günter, Peter</creatorcontrib><creatorcontrib>Kaatz, Philip</creatorcontrib><creatorcontrib>Weder, Christoph</creatorcontrib><creatorcontrib>Neuenschwander, Peter</creatorcontrib><creatorcontrib>Suter, Ulrich W</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prêtre, Philippe</au><au>Meier, Urs</au><au>Stalder, Urs</au><au>Bosshard, Christian</au><au>Günter, Peter</au><au>Kaatz, Philip</au><au>Weder, Christoph</au><au>Neuenschwander, Peter</au><au>Suter, Ulrich W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation Processes in Nonlinear Optical Polymers:  A Comparative Study</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>1998-03-24</date><risdate>1998</risdate><volume>31</volume><issue>6</issue><spage>1947</spage><epage>1957</epage><pages>1947-1957</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>Relaxation processes in nonlinear optical (NLO) polymers with glass transition temperatures in the range of 125 °C &lt; T g &lt; 176 °C have been studied. The relaxational mechanisms of these side- and main-chain polymers have been investigated above and below the glass transition by second-harmonic decay, dielectric relaxation, and differential scanning calorimetry measurements, and the results obtained have been compared with a variety of nonlinear optical polymer systems cited in the literature. The nonexponential relaxation in both the time and frequency domain was modeled by the Kohlrausch−Williams−Watts function whereas the nonlinear relaxational behavior of these polymers was modeled in terms of the Tool−Narayanaswamy description of the glassy state using the Adam−Gibbs expression for the relaxation time. This procedure allows for the nonlinear extension of the liquid equilibrium state behavior into and below the glass transition region with an accurate prediction of the relaxation times over more than 15 orders of magnitude in time. Time−temperature scaling of the relaxation times with respect to T g/T as the relevant scaling parameter is observed below the glass transition. The effect of annealing was investigated using differential scanning calorimetry with the result that a single set of parameters is sufficient to describe a wide range of thermal histories with as well as without annealing. Optimum annealing temperatures/annealing times for best orientational stability in NLO polymers were calculated according to the same relaxation scheme.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma9713623</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 1998-03, Vol.31 (6), p.1947-1957
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma9713623
source American Chemical Society Journals
subjects Applied sciences
Electrical, magnetic and optical properties
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
title Relaxation Processes in Nonlinear Optical Polymers:  A Comparative Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20Processes%20in%20Nonlinear%20Optical%20Polymers:%E2%80%89%20A%20Comparative%20Study&rft.jtitle=Macromolecules&rft.au=Pr%C3%AAtre,%20Philippe&rft.date=1998-03-24&rft.volume=31&rft.issue=6&rft.spage=1947&rft.epage=1957&rft.pages=1947-1957&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma9713623&rft_dat=%3Cistex_cross%3Eark_67375_TPS_VQK7XN7P_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true