Gradient Interfaces in SBS and SBS/PS Blends and Their Influence on Morphology Development and Material Properties
The formation of gradient interfaces between PS- and PB-rich microphases in SBS block copolymers was investigated by means of solid-state NMR and solution NMR as well as TEM, AFM, and SAXS as a function of molecular architecture, comparing linear and star-shaped asymmetric block structures, and grad...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2009-08, Vol.42 (15), p.5684-5699 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The formation of gradient interfaces between PS- and PB-rich microphases in SBS block copolymers was investigated by means of solid-state NMR and solution NMR as well as TEM, AFM, and SAXS as a function of molecular architecture, comparing linear and star-shaped asymmetric block structures, and gradient as well as random incorporation of styrene comonomer into the PB-rich blocks. Although all studied SBS possess a very similar total styrene content, different morphologies and mechanical properties were found in the extruded SBS/PS blends, whose origin could be related to the formation of a compositional interface gradient. Employing the sensitivity of solid-state NMR for hard (glassy) and soft (rubbery) phases as well as their respective chemical compositions, we found that upon raising the temperature up to the PS glass transition different amounts of polystyrene from the hard PS phase “soften” and integrate into the soft PB-rich phase (“PS softening”). The degree of “PS softening” characterizes the interfacial gradients of SBS block copolymers at elevated temperatures up to the melt. The softened PS was found to partially mix into the soft phase and partially remain at the interface, thus forming different gradient interfaces, depending primarily on the amount of styrene randomly incorporated in the PB mobile blocks and much less on a compositional gradient at the block linkages in SBS chains. In SBS/PS blends, SBS with a substantial “PS softening” effect was found to preferentially form elongated PB lamellar morphologies, which lead to improved mechanical ductility. The purpose of this study was to apply different characterization methods and correlate their results in order to gain important compositional and morphological information as well as their effects on the SBS/PS blend mechanical properties. Rapid and robust low-cost pulsed solid-state NMR methods were established as versatile analytical tools for application in high-output polymer screening (HOPS) and quality control systems, enabling online monitoring of structure−property correlations as well as product quality of SBS-based materials. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma8000725 |