Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte

A systematic study of the dependence of ionic conductivity on the grain size of a lamellar block copolymer electrolyte was performed. A freeze-dried mixture of poly(styrene)-block-poly(ethylene oxide) and lithium bis(trifluoromethylsulfonyl)imide salt was heated in steps from 29 to 116 °C and then c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2014-08, Vol.47 (15), p.5424-5431
Hauptverfasser: Chintapalli, Mahati, Chen, X. Chelsea, Thelen, Jacob L, Teran, Alexander A, Wang, Xin, Garetz, Bruce A, Balsara, Nitash P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5431
container_issue 15
container_start_page 5424
container_title Macromolecules
container_volume 47
creator Chintapalli, Mahati
Chen, X. Chelsea
Thelen, Jacob L
Teran, Alexander A
Wang, Xin
Garetz, Bruce A
Balsara, Nitash P
description A systematic study of the dependence of ionic conductivity on the grain size of a lamellar block copolymer electrolyte was performed. A freeze-dried mixture of poly(styrene)-block-poly(ethylene oxide) and lithium bis(trifluoromethylsulfonyl)imide salt was heated in steps from 29 to 116 °C and then cooled back to 29 °C with an annealing time ranging from 30 to 60 min at each temperature. Grain structure and ionic conductivity during these steps were quantified by in situ small-angle X-ray scattering and ac impedance spectroscopy, respectively. Conductivity depends both on grain structure and temperature. A normalization scheme to decouple the dependence of conductivity on temperature and grain structure is described. Ionic conductivity at a given temperature was found to decrease by a factor of 5.2 ± 0.9 as the SAXS measure of grain size increased from 13 to 88 nm. The fact that in the system studied, large, well-formed lamellar grains are less conducting than poorly defined, small grains suggests a new approach for optimizing the transport properties of block copolymer electrolytes. Further work is necessary to confirm the generality of this finding.
doi_str_mv 10.1021/ma501202c
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma501202c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c217715690</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-e865acff49cd97981c81a6833f50e5334751ac05c621b2639e27b46d553ceb63</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EEqUw8AZeGBgCZzt24hGqtlSq1IHukXu1hUsSR3aKVJ6eVEVlYTrd6fs_6X5C7hk8MeDsuTESGAeOF2TEJIdMlkJekhEAzzPNdXFNblLaATAmczEiq6lzFnsaHJ1H41v67r8tDS3tPyxdhNYjnYR2u8fef_n-cOQMfa0Dfg73LtSHxkY6rQdFHJbe3pIrZ-pk737nmKxn0_XkLVuu5ovJyzIzQkOf2VJJg87lGre60CXDkhlVCuEkWClEXkhmECQqzjZcCW15scnVVkqBdqPEmDyetBhDStG6qou-MfFQMaiORVTnIgb24cR2JqGpXTQt-nQO8LJQUkH-xxlM1S7sYzs88I_vB6WtaBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte</title><source>ACS Publications</source><creator>Chintapalli, Mahati ; Chen, X. Chelsea ; Thelen, Jacob L ; Teran, Alexander A ; Wang, Xin ; Garetz, Bruce A ; Balsara, Nitash P</creator><creatorcontrib>Chintapalli, Mahati ; Chen, X. Chelsea ; Thelen, Jacob L ; Teran, Alexander A ; Wang, Xin ; Garetz, Bruce A ; Balsara, Nitash P</creatorcontrib><description>A systematic study of the dependence of ionic conductivity on the grain size of a lamellar block copolymer electrolyte was performed. A freeze-dried mixture of poly(styrene)-block-poly(ethylene oxide) and lithium bis(trifluoromethylsulfonyl)imide salt was heated in steps from 29 to 116 °C and then cooled back to 29 °C with an annealing time ranging from 30 to 60 min at each temperature. Grain structure and ionic conductivity during these steps were quantified by in situ small-angle X-ray scattering and ac impedance spectroscopy, respectively. Conductivity depends both on grain structure and temperature. A normalization scheme to decouple the dependence of conductivity on temperature and grain structure is described. Ionic conductivity at a given temperature was found to decrease by a factor of 5.2 ± 0.9 as the SAXS measure of grain size increased from 13 to 88 nm. The fact that in the system studied, large, well-formed lamellar grains are less conducting than poorly defined, small grains suggests a new approach for optimizing the transport properties of block copolymer electrolytes. Further work is necessary to confirm the generality of this finding.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma501202c</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Electrical, magnetic and optical properties ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization</subject><ispartof>Macromolecules, 2014-08, Vol.47 (15), p.5424-5431</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-e865acff49cd97981c81a6833f50e5334751ac05c621b2639e27b46d553ceb63</citedby><cites>FETCH-LOGICAL-a390t-e865acff49cd97981c81a6833f50e5334751ac05c621b2639e27b46d553ceb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma501202c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma501202c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28765604$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chintapalli, Mahati</creatorcontrib><creatorcontrib>Chen, X. Chelsea</creatorcontrib><creatorcontrib>Thelen, Jacob L</creatorcontrib><creatorcontrib>Teran, Alexander A</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Garetz, Bruce A</creatorcontrib><creatorcontrib>Balsara, Nitash P</creatorcontrib><title>Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>A systematic study of the dependence of ionic conductivity on the grain size of a lamellar block copolymer electrolyte was performed. A freeze-dried mixture of poly(styrene)-block-poly(ethylene oxide) and lithium bis(trifluoromethylsulfonyl)imide salt was heated in steps from 29 to 116 °C and then cooled back to 29 °C with an annealing time ranging from 30 to 60 min at each temperature. Grain structure and ionic conductivity during these steps were quantified by in situ small-angle X-ray scattering and ac impedance spectroscopy, respectively. Conductivity depends both on grain structure and temperature. A normalization scheme to decouple the dependence of conductivity on temperature and grain structure is described. Ionic conductivity at a given temperature was found to decrease by a factor of 5.2 ± 0.9 as the SAXS measure of grain size increased from 13 to 88 nm. The fact that in the system studied, large, well-formed lamellar grains are less conducting than poorly defined, small grains suggests a new approach for optimizing the transport properties of block copolymer electrolytes. Further work is necessary to confirm the generality of this finding.</description><subject>Applied sciences</subject><subject>Electrical, magnetic and optical properties</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkLFOwzAQhi0EEqUw8AZeGBgCZzt24hGqtlSq1IHukXu1hUsSR3aKVJ6eVEVlYTrd6fs_6X5C7hk8MeDsuTESGAeOF2TEJIdMlkJekhEAzzPNdXFNblLaATAmczEiq6lzFnsaHJ1H41v67r8tDS3tPyxdhNYjnYR2u8fef_n-cOQMfa0Dfg73LtSHxkY6rQdFHJbe3pIrZ-pk737nmKxn0_XkLVuu5ovJyzIzQkOf2VJJg87lGre60CXDkhlVCuEkWClEXkhmECQqzjZcCW15scnVVkqBdqPEmDyetBhDStG6qou-MfFQMaiORVTnIgb24cR2JqGpXTQt-nQO8LJQUkH-xxlM1S7sYzs88I_vB6WtaBY</recordid><startdate>20140812</startdate><enddate>20140812</enddate><creator>Chintapalli, Mahati</creator><creator>Chen, X. Chelsea</creator><creator>Thelen, Jacob L</creator><creator>Teran, Alexander A</creator><creator>Wang, Xin</creator><creator>Garetz, Bruce A</creator><creator>Balsara, Nitash P</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140812</creationdate><title>Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte</title><author>Chintapalli, Mahati ; Chen, X. Chelsea ; Thelen, Jacob L ; Teran, Alexander A ; Wang, Xin ; Garetz, Bruce A ; Balsara, Nitash P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-e865acff49cd97981c81a6833f50e5334751ac05c621b2639e27b46d553ceb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Electrical, magnetic and optical properties</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chintapalli, Mahati</creatorcontrib><creatorcontrib>Chen, X. Chelsea</creatorcontrib><creatorcontrib>Thelen, Jacob L</creatorcontrib><creatorcontrib>Teran, Alexander A</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Garetz, Bruce A</creatorcontrib><creatorcontrib>Balsara, Nitash P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chintapalli, Mahati</au><au>Chen, X. Chelsea</au><au>Thelen, Jacob L</au><au>Teran, Alexander A</au><au>Wang, Xin</au><au>Garetz, Bruce A</au><au>Balsara, Nitash P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2014-08-12</date><risdate>2014</risdate><volume>47</volume><issue>15</issue><spage>5424</spage><epage>5431</epage><pages>5424-5431</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>A systematic study of the dependence of ionic conductivity on the grain size of a lamellar block copolymer electrolyte was performed. A freeze-dried mixture of poly(styrene)-block-poly(ethylene oxide) and lithium bis(trifluoromethylsulfonyl)imide salt was heated in steps from 29 to 116 °C and then cooled back to 29 °C with an annealing time ranging from 30 to 60 min at each temperature. Grain structure and ionic conductivity during these steps were quantified by in situ small-angle X-ray scattering and ac impedance spectroscopy, respectively. Conductivity depends both on grain structure and temperature. A normalization scheme to decouple the dependence of conductivity on temperature and grain structure is described. Ionic conductivity at a given temperature was found to decrease by a factor of 5.2 ± 0.9 as the SAXS measure of grain size increased from 13 to 88 nm. The fact that in the system studied, large, well-formed lamellar grains are less conducting than poorly defined, small grains suggests a new approach for optimizing the transport properties of block copolymer electrolytes. Further work is necessary to confirm the generality of this finding.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma501202c</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2014-08, Vol.47 (15), p.5424-5431
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma501202c
source ACS Publications
subjects Applied sciences
Electrical, magnetic and optical properties
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
title Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Grain%20Size%20on%20the%20Ionic%20Conductivity%20of%20a%20Block%20Copolymer%20Electrolyte&rft.jtitle=Macromolecules&rft.au=Chintapalli,%20Mahati&rft.date=2014-08-12&rft.volume=47&rft.issue=15&rft.spage=5424&rft.epage=5431&rft.pages=5424-5431&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma501202c&rft_dat=%3Cacs_cross%3Ec217715690%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true