Manipulating Nanoscale Morphologies in Cylinder-Forming Poly(styrene‑b‑isoprene‑b‑styrene) Thin Films Using Film Thickness and Substrate Surface Chemistry Gradients

Controlling the nanostructure of self-assembled block copolymer thin films is critical for applications in nanotemplate design, nanoporous membranes, and organic optoelectronics. In this study, we employed a gradient approach to examine the effects of substrate surface chemistry and film thickness o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2013-03, Vol.46 (5), p.1803-1811
Hauptverfasser: Luo, Ming, Seppala, Jonathan E, Albert, Julie N. L, Lewis, Ronald L, Mahadevapuram, Nikhila, Stein, Gila E, Epps, Thomas H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1811
container_issue 5
container_start_page 1803
container_title Macromolecules
container_volume 46
creator Luo, Ming
Seppala, Jonathan E
Albert, Julie N. L
Lewis, Ronald L
Mahadevapuram, Nikhila
Stein, Gila E
Epps, Thomas H
description Controlling the nanostructure of self-assembled block copolymer thin films is critical for applications in nanotemplate design, nanoporous membranes, and organic optoelectronics. In this study, we employed a gradient approach to examine the effects of substrate surface chemistry and film thickness on the self-assembly of cylinder-forming poly(styrene-b-isoprene-b-styrene) (SIS) thin films. Using gradients in film thickness from 85 to 120 nm (3.1d to 4.4d), we found that the thin films contained parallel cylinders on both bare silicon substrates and benzyldimethylchlorosilane (benzyl silane)-modified substrates regardless of film thickness, while thin films contained surface patterns of hexagonally arranged dots on n-butyldimethylchlorosilane (n-butyl silane)-modified substrates. These surface patterns were further investigated using film etching, cross-sectional transmission electron microscopy (TEM), and grazing-incidence small-angle X-ray scattering (GISAXS) techniques. We determined that the nanostructures represented a hexagonally perforated lamellar (HPL) morphology in which the parallel cylinder layering was preserved during the phase transformation to HPL. Additionally, controlled vapor deposition was used to generate a nearly linear substrate surface chemistry gradient from benzyl silane to n-butyl silane. Examination of SIS thin films on this surface gradient revealed a morphological transformation from parallel cylinders to HPL with changing substrate surface composition. Thus, we demonstrated the combined usage of film thickness and monolayer substrate surface chemistry gradients to manipulate the nanostructure of block copolymer films, such as SIS, that possess moderate differences in surface energy between individual blocks. Our gradients represent a high-throughput and versatile screening tool that facilitates the examination of new materials and furthers the understanding of block copolymer thin film self-assembly.
doi_str_mv 10.1021/ma302410q
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma302410q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c196351295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-5b19a4bc08e9e6651b1b3a32ffc9e0c88652a1465c310c518e1f8773d6e2d1a23</originalsourceid><addsrcrecordid>eNptkUtuFDEQhluISAyBBTewkJDIooMf434s0SgTkPKSSNatand1xqHbblyeRe-4AvfgVJwkbk0UWLCwXPX7-3-pXFn2TvBTwaX4NILici34jxfZSmjJc10p_TJb8aTmtazLV9lrogfOhdBrtcp-X4Kz036AaN09uwLnycCA7NKHaecHf2-RmHVsMw_WdRjyrQ_jgt74Yf5IcQ7o8M_PX206lvz0T_v0eMJudylga4eR2B0t3qVeVPPdIRED17Fv-5ZigIipCj0YZJsdjjZpMzsP0Fl0kd5kRz0MhG-f7uPsbnt2u_mSX1yff918vshBVTLmuhU1rFvDK6yxKLRoRatAyb43NXJTVYWWINaFNkpwo0WFoq_KUnUFyk6AVMfZ-0Oup2gbMjai2RnvHJrYCF7KsqwTdHKATPBEAftmCnaEMCeiWXbRPO8isR8O7ATL9_YBnLH0bJCllLxS4i8HhpoHvw8ujfmfvEfduJxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Manipulating Nanoscale Morphologies in Cylinder-Forming Poly(styrene‑b‑isoprene‑b‑styrene) Thin Films Using Film Thickness and Substrate Surface Chemistry Gradients</title><source>ACS Publications</source><creator>Luo, Ming ; Seppala, Jonathan E ; Albert, Julie N. L ; Lewis, Ronald L ; Mahadevapuram, Nikhila ; Stein, Gila E ; Epps, Thomas H</creator><creatorcontrib>Luo, Ming ; Seppala, Jonathan E ; Albert, Julie N. L ; Lewis, Ronald L ; Mahadevapuram, Nikhila ; Stein, Gila E ; Epps, Thomas H ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Controlling the nanostructure of self-assembled block copolymer thin films is critical for applications in nanotemplate design, nanoporous membranes, and organic optoelectronics. In this study, we employed a gradient approach to examine the effects of substrate surface chemistry and film thickness on the self-assembly of cylinder-forming poly(styrene-b-isoprene-b-styrene) (SIS) thin films. Using gradients in film thickness from 85 to 120 nm (3.1d to 4.4d), we found that the thin films contained parallel cylinders on both bare silicon substrates and benzyldimethylchlorosilane (benzyl silane)-modified substrates regardless of film thickness, while thin films contained surface patterns of hexagonally arranged dots on n-butyldimethylchlorosilane (n-butyl silane)-modified substrates. These surface patterns were further investigated using film etching, cross-sectional transmission electron microscopy (TEM), and grazing-incidence small-angle X-ray scattering (GISAXS) techniques. We determined that the nanostructures represented a hexagonally perforated lamellar (HPL) morphology in which the parallel cylinder layering was preserved during the phase transformation to HPL. Additionally, controlled vapor deposition was used to generate a nearly linear substrate surface chemistry gradient from benzyl silane to n-butyl silane. Examination of SIS thin films on this surface gradient revealed a morphological transformation from parallel cylinders to HPL with changing substrate surface composition. Thus, we demonstrated the combined usage of film thickness and monolayer substrate surface chemistry gradients to manipulate the nanostructure of block copolymer films, such as SIS, that possess moderate differences in surface energy between individual blocks. Our gradients represent a high-throughput and versatile screening tool that facilitates the examination of new materials and furthers the understanding of block copolymer thin film self-assembly.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma302410q</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Structure, morphology and analysis</subject><ispartof>Macromolecules, 2013-03, Vol.46 (5), p.1803-1811</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-5b19a4bc08e9e6651b1b3a32ffc9e0c88652a1465c310c518e1f8773d6e2d1a23</citedby><cites>FETCH-LOGICAL-a382t-5b19a4bc08e9e6651b1b3a32ffc9e0c88652a1465c310c518e1f8773d6e2d1a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma302410q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma302410q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27220831$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1072779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Seppala, Jonathan E</creatorcontrib><creatorcontrib>Albert, Julie N. L</creatorcontrib><creatorcontrib>Lewis, Ronald L</creatorcontrib><creatorcontrib>Mahadevapuram, Nikhila</creatorcontrib><creatorcontrib>Stein, Gila E</creatorcontrib><creatorcontrib>Epps, Thomas H</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Manipulating Nanoscale Morphologies in Cylinder-Forming Poly(styrene‑b‑isoprene‑b‑styrene) Thin Films Using Film Thickness and Substrate Surface Chemistry Gradients</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Controlling the nanostructure of self-assembled block copolymer thin films is critical for applications in nanotemplate design, nanoporous membranes, and organic optoelectronics. In this study, we employed a gradient approach to examine the effects of substrate surface chemistry and film thickness on the self-assembly of cylinder-forming poly(styrene-b-isoprene-b-styrene) (SIS) thin films. Using gradients in film thickness from 85 to 120 nm (3.1d to 4.4d), we found that the thin films contained parallel cylinders on both bare silicon substrates and benzyldimethylchlorosilane (benzyl silane)-modified substrates regardless of film thickness, while thin films contained surface patterns of hexagonally arranged dots on n-butyldimethylchlorosilane (n-butyl silane)-modified substrates. These surface patterns were further investigated using film etching, cross-sectional transmission electron microscopy (TEM), and grazing-incidence small-angle X-ray scattering (GISAXS) techniques. We determined that the nanostructures represented a hexagonally perforated lamellar (HPL) morphology in which the parallel cylinder layering was preserved during the phase transformation to HPL. Additionally, controlled vapor deposition was used to generate a nearly linear substrate surface chemistry gradient from benzyl silane to n-butyl silane. Examination of SIS thin films on this surface gradient revealed a morphological transformation from parallel cylinders to HPL with changing substrate surface composition. Thus, we demonstrated the combined usage of film thickness and monolayer substrate surface chemistry gradients to manipulate the nanostructure of block copolymer films, such as SIS, that possess moderate differences in surface energy between individual blocks. Our gradients represent a high-throughput and versatile screening tool that facilitates the examination of new materials and furthers the understanding of block copolymer thin film self-assembly.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Structure, morphology and analysis</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkUtuFDEQhluISAyBBTewkJDIooMf434s0SgTkPKSSNatand1xqHbblyeRe-4AvfgVJwkbk0UWLCwXPX7-3-pXFn2TvBTwaX4NILici34jxfZSmjJc10p_TJb8aTmtazLV9lrogfOhdBrtcp-X4Kz036AaN09uwLnycCA7NKHaecHf2-RmHVsMw_WdRjyrQ_jgt74Yf5IcQ7o8M_PX206lvz0T_v0eMJudylga4eR2B0t3qVeVPPdIRED17Fv-5ZigIipCj0YZJsdjjZpMzsP0Fl0kd5kRz0MhG-f7uPsbnt2u_mSX1yff918vshBVTLmuhU1rFvDK6yxKLRoRatAyb43NXJTVYWWINaFNkpwo0WFoq_KUnUFyk6AVMfZ-0Oup2gbMjai2RnvHJrYCF7KsqwTdHKATPBEAftmCnaEMCeiWXbRPO8isR8O7ATL9_YBnLH0bJCllLxS4i8HhpoHvw8ujfmfvEfduJxQ</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Luo, Ming</creator><creator>Seppala, Jonathan E</creator><creator>Albert, Julie N. L</creator><creator>Lewis, Ronald L</creator><creator>Mahadevapuram, Nikhila</creator><creator>Stein, Gila E</creator><creator>Epps, Thomas H</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130312</creationdate><title>Manipulating Nanoscale Morphologies in Cylinder-Forming Poly(styrene‑b‑isoprene‑b‑styrene) Thin Films Using Film Thickness and Substrate Surface Chemistry Gradients</title><author>Luo, Ming ; Seppala, Jonathan E ; Albert, Julie N. L ; Lewis, Ronald L ; Mahadevapuram, Nikhila ; Stein, Gila E ; Epps, Thomas H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-5b19a4bc08e9e6651b1b3a32ffc9e0c88652a1465c310c518e1f8773d6e2d1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Structure, morphology and analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Seppala, Jonathan E</creatorcontrib><creatorcontrib>Albert, Julie N. L</creatorcontrib><creatorcontrib>Lewis, Ronald L</creatorcontrib><creatorcontrib>Mahadevapuram, Nikhila</creatorcontrib><creatorcontrib>Stein, Gila E</creatorcontrib><creatorcontrib>Epps, Thomas H</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Ming</au><au>Seppala, Jonathan E</au><au>Albert, Julie N. L</au><au>Lewis, Ronald L</au><au>Mahadevapuram, Nikhila</au><au>Stein, Gila E</au><au>Epps, Thomas H</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Nanoscale Morphologies in Cylinder-Forming Poly(styrene‑b‑isoprene‑b‑styrene) Thin Films Using Film Thickness and Substrate Surface Chemistry Gradients</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2013-03-12</date><risdate>2013</risdate><volume>46</volume><issue>5</issue><spage>1803</spage><epage>1811</epage><pages>1803-1811</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>Controlling the nanostructure of self-assembled block copolymer thin films is critical for applications in nanotemplate design, nanoporous membranes, and organic optoelectronics. In this study, we employed a gradient approach to examine the effects of substrate surface chemistry and film thickness on the self-assembly of cylinder-forming poly(styrene-b-isoprene-b-styrene) (SIS) thin films. Using gradients in film thickness from 85 to 120 nm (3.1d to 4.4d), we found that the thin films contained parallel cylinders on both bare silicon substrates and benzyldimethylchlorosilane (benzyl silane)-modified substrates regardless of film thickness, while thin films contained surface patterns of hexagonally arranged dots on n-butyldimethylchlorosilane (n-butyl silane)-modified substrates. These surface patterns were further investigated using film etching, cross-sectional transmission electron microscopy (TEM), and grazing-incidence small-angle X-ray scattering (GISAXS) techniques. We determined that the nanostructures represented a hexagonally perforated lamellar (HPL) morphology in which the parallel cylinder layering was preserved during the phase transformation to HPL. Additionally, controlled vapor deposition was used to generate a nearly linear substrate surface chemistry gradient from benzyl silane to n-butyl silane. Examination of SIS thin films on this surface gradient revealed a morphological transformation from parallel cylinders to HPL with changing substrate surface composition. Thus, we demonstrated the combined usage of film thickness and monolayer substrate surface chemistry gradients to manipulate the nanostructure of block copolymer films, such as SIS, that possess moderate differences in surface energy between individual blocks. Our gradients represent a high-throughput and versatile screening tool that facilitates the examination of new materials and furthers the understanding of block copolymer thin film self-assembly.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma302410q</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2013-03, Vol.46 (5), p.1803-1811
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma302410q
source ACS Publications
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
Structure, morphology and analysis
title Manipulating Nanoscale Morphologies in Cylinder-Forming Poly(styrene‑b‑isoprene‑b‑styrene) Thin Films Using Film Thickness and Substrate Surface Chemistry Gradients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Nanoscale%20Morphologies%20in%20Cylinder-Forming%20Poly(styrene%E2%80%91b%E2%80%91isoprene%E2%80%91b%E2%80%91styrene)%20Thin%20Films%20Using%20Film%20Thickness%20and%20Substrate%20Surface%20Chemistry%20Gradients&rft.jtitle=Macromolecules&rft.au=Luo,%20Ming&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2013-03-12&rft.volume=46&rft.issue=5&rft.spage=1803&rft.epage=1811&rft.pages=1803-1811&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma302410q&rft_dat=%3Cacs_osti_%3Ec196351295%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true