Variation of Weak Polyelectrolyte Persistence Length through an Electrostatic Contour Length

There is currently no consensus that the classical perspective of electrostatic persistence length (the so-called Odijk–Skolnick–Fixman, or OSF, formulation), derived by equating changes in electrostatic energy with bending rigidity, is applicable to weak polyelectrolytes. Here, with a focus on poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2012-10, Vol.45 (19), p.8067-8082
Hauptverfasser: Cranford, Steven W, Buehler, Markus J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8082
container_issue 19
container_start_page 8067
container_title Macromolecules
container_volume 45
creator Cranford, Steven W
Buehler, Markus J
description There is currently no consensus that the classical perspective of electrostatic persistence length (the so-called Odijk–Skolnick–Fixman, or OSF, formulation), derived by equating changes in electrostatic energy with bending rigidity, is applicable to weak polyelectrolytes. Here, with a focus on polyelectrolyte chains of finite length at a single scale, we formulate a simple and general theoretical model featuring the electrostatic persistence length, P e, through the introduction of an electrostatic contour length, L e, such that the electrostatic energy balance is applicable to highly flexible charged polyelectrolytes (where the intrinsic stiffness, P 0 is on the order of P e). To isolate the effect of ionization, only the salt-free regime is considered. At the upper limit (relatively rigid molecules), the new formulation converges to the classical OSF form, while the lower bound (highly flexible molecules) approaches proportionality to the Debye screening length, κ–1. In general, the electrostatic persistence can be described retroactively by the Debye screening, κ–1, and the ratio of electrostatic to intrinsic contour lengths, A/a, complementary to predictive theoretical formulations. The theory is validated via full atomistic molecular dynamics simulations of single, isolated model weak polyelectrolyte chains in explicit solventspecifically poly(acrylic acid), PAA, and poly(allylamine hydrochloride), PAH, both of which undergo significant increases in persistence length under ionization. An ensemble of equilibrated polymer states is obtained via temperature assisted sampling, implementing molecular dynamics to drive the polymers into physically accessible conformations via cyclical temperature fluctuations and equilibration.
doi_str_mv 10.1021/ma3008465
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma3008465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c159735623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-b65de8e59964d1b240d8f3b80b0fc4dc239b20d44dd4683f75600050ed99fba53</originalsourceid><addsrcrecordid>eNptkLtOwzAUhi0EEqUw8AZeGBgCx7c0HlFULlIlOnBZkCLHlyYldSrbHfr2BKWqGJjOGb7z6fw_QtcE7ghQcr9RDKDguThBEyIoZKJg4hRNACjPJJWzc3QR4xqAEMHZBH19qNCq1PYe9w5_WvWNl323t53VKQxLsnhpQ2xjsl5bvLB-lRqcmtDvVg1WHs9HMqZBonHZ-9TvwoG7RGdOddFeHeYUvT_O38rnbPH69FI-LDLFhEhZnQtjCyukzLkhNeVgCsfqAmpwmhtNmawpGM6N4XnB3EzkACDAGildrQSbotvRq4dHYrCu2oZ2o8K-IlD91lIdaxnYm5HdqqhV54Lyuo3HA5pzQRj7wykdq_WQyQ8J_vH9AD8vbrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variation of Weak Polyelectrolyte Persistence Length through an Electrostatic Contour Length</title><source>ACS Publications</source><creator>Cranford, Steven W ; Buehler, Markus J</creator><creatorcontrib>Cranford, Steven W ; Buehler, Markus J</creatorcontrib><description>There is currently no consensus that the classical perspective of electrostatic persistence length (the so-called Odijk–Skolnick–Fixman, or OSF, formulation), derived by equating changes in electrostatic energy with bending rigidity, is applicable to weak polyelectrolytes. Here, with a focus on polyelectrolyte chains of finite length at a single scale, we formulate a simple and general theoretical model featuring the electrostatic persistence length, P e, through the introduction of an electrostatic contour length, L e, such that the electrostatic energy balance is applicable to highly flexible charged polyelectrolytes (where the intrinsic stiffness, P 0 is on the order of P e). To isolate the effect of ionization, only the salt-free regime is considered. At the upper limit (relatively rigid molecules), the new formulation converges to the classical OSF form, while the lower bound (highly flexible molecules) approaches proportionality to the Debye screening length, κ–1. In general, the electrostatic persistence can be described retroactively by the Debye screening, κ–1, and the ratio of electrostatic to intrinsic contour lengths, A/a, complementary to predictive theoretical formulations. The theory is validated via full atomistic molecular dynamics simulations of single, isolated model weak polyelectrolyte chains in explicit solventspecifically poly(acrylic acid), PAA, and poly(allylamine hydrochloride), PAH, both of which undergo significant increases in persistence length under ionization. An ensemble of equilibrated polymer states is obtained via temperature assisted sampling, implementing molecular dynamics to drive the polymers into physically accessible conformations via cyclical temperature fluctuations and equilibration.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma3008465</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Solution and gel properties</subject><ispartof>Macromolecules, 2012-10, Vol.45 (19), p.8067-8082</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-b65de8e59964d1b240d8f3b80b0fc4dc239b20d44dd4683f75600050ed99fba53</citedby><cites>FETCH-LOGICAL-a355t-b65de8e59964d1b240d8f3b80b0fc4dc239b20d44dd4683f75600050ed99fba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma3008465$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma3008465$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26451335$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cranford, Steven W</creatorcontrib><creatorcontrib>Buehler, Markus J</creatorcontrib><title>Variation of Weak Polyelectrolyte Persistence Length through an Electrostatic Contour Length</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>There is currently no consensus that the classical perspective of electrostatic persistence length (the so-called Odijk–Skolnick–Fixman, or OSF, formulation), derived by equating changes in electrostatic energy with bending rigidity, is applicable to weak polyelectrolytes. Here, with a focus on polyelectrolyte chains of finite length at a single scale, we formulate a simple and general theoretical model featuring the electrostatic persistence length, P e, through the introduction of an electrostatic contour length, L e, such that the electrostatic energy balance is applicable to highly flexible charged polyelectrolytes (where the intrinsic stiffness, P 0 is on the order of P e). To isolate the effect of ionization, only the salt-free regime is considered. At the upper limit (relatively rigid molecules), the new formulation converges to the classical OSF form, while the lower bound (highly flexible molecules) approaches proportionality to the Debye screening length, κ–1. In general, the electrostatic persistence can be described retroactively by the Debye screening, κ–1, and the ratio of electrostatic to intrinsic contour lengths, A/a, complementary to predictive theoretical formulations. The theory is validated via full atomistic molecular dynamics simulations of single, isolated model weak polyelectrolyte chains in explicit solventspecifically poly(acrylic acid), PAA, and poly(allylamine hydrochloride), PAH, both of which undergo significant increases in persistence length under ionization. An ensemble of equilibrated polymer states is obtained via temperature assisted sampling, implementing molecular dynamics to drive the polymers into physically accessible conformations via cyclical temperature fluctuations and equilibration.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Solution and gel properties</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkLtOwzAUhi0EEqUw8AZeGBgCx7c0HlFULlIlOnBZkCLHlyYldSrbHfr2BKWqGJjOGb7z6fw_QtcE7ghQcr9RDKDguThBEyIoZKJg4hRNACjPJJWzc3QR4xqAEMHZBH19qNCq1PYe9w5_WvWNl323t53VKQxLsnhpQ2xjsl5bvLB-lRqcmtDvVg1WHs9HMqZBonHZ-9TvwoG7RGdOddFeHeYUvT_O38rnbPH69FI-LDLFhEhZnQtjCyukzLkhNeVgCsfqAmpwmhtNmawpGM6N4XnB3EzkACDAGildrQSbotvRq4dHYrCu2oZ2o8K-IlD91lIdaxnYm5HdqqhV54Lyuo3HA5pzQRj7wykdq_WQyQ8J_vH9AD8vbrI</recordid><startdate>20121009</startdate><enddate>20121009</enddate><creator>Cranford, Steven W</creator><creator>Buehler, Markus J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121009</creationdate><title>Variation of Weak Polyelectrolyte Persistence Length through an Electrostatic Contour Length</title><author>Cranford, Steven W ; Buehler, Markus J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-b65de8e59964d1b240d8f3b80b0fc4dc239b20d44dd4683f75600050ed99fba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Solution and gel properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cranford, Steven W</creatorcontrib><creatorcontrib>Buehler, Markus J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cranford, Steven W</au><au>Buehler, Markus J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation of Weak Polyelectrolyte Persistence Length through an Electrostatic Contour Length</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2012-10-09</date><risdate>2012</risdate><volume>45</volume><issue>19</issue><spage>8067</spage><epage>8082</epage><pages>8067-8082</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>There is currently no consensus that the classical perspective of electrostatic persistence length (the so-called Odijk–Skolnick–Fixman, or OSF, formulation), derived by equating changes in electrostatic energy with bending rigidity, is applicable to weak polyelectrolytes. Here, with a focus on polyelectrolyte chains of finite length at a single scale, we formulate a simple and general theoretical model featuring the electrostatic persistence length, P e, through the introduction of an electrostatic contour length, L e, such that the electrostatic energy balance is applicable to highly flexible charged polyelectrolytes (where the intrinsic stiffness, P 0 is on the order of P e). To isolate the effect of ionization, only the salt-free regime is considered. At the upper limit (relatively rigid molecules), the new formulation converges to the classical OSF form, while the lower bound (highly flexible molecules) approaches proportionality to the Debye screening length, κ–1. In general, the electrostatic persistence can be described retroactively by the Debye screening, κ–1, and the ratio of electrostatic to intrinsic contour lengths, A/a, complementary to predictive theoretical formulations. The theory is validated via full atomistic molecular dynamics simulations of single, isolated model weak polyelectrolyte chains in explicit solventspecifically poly(acrylic acid), PAA, and poly(allylamine hydrochloride), PAH, both of which undergo significant increases in persistence length under ionization. An ensemble of equilibrated polymer states is obtained via temperature assisted sampling, implementing molecular dynamics to drive the polymers into physically accessible conformations via cyclical temperature fluctuations and equilibration.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma3008465</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2012-10, Vol.45 (19), p.8067-8082
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma3008465
source ACS Publications
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
Solution and gel properties
title Variation of Weak Polyelectrolyte Persistence Length through an Electrostatic Contour Length
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20of%20Weak%20Polyelectrolyte%20Persistence%20Length%20through%20an%20Electrostatic%20Contour%20Length&rft.jtitle=Macromolecules&rft.au=Cranford,%20Steven%20W&rft.date=2012-10-09&rft.volume=45&rft.issue=19&rft.spage=8067&rft.epage=8082&rft.pages=8067-8082&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma3008465&rft_dat=%3Cacs_cross%3Ec159735623%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true