Lamellar Liquid Single Crystal Hydrogels:  Synthesis and Investigation of Anisotropic Water Diffusion and Swelling

The synthesis and characterization of anisotropic liquid single crystal hydrogels (LSCHs) via photoinduced radical polymerization of magnetically aligned samples in the lyotropic mesophase are reported, which are stable against tensile stresses in all three dimensions. The hydrogels exhibit a lamell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2005-11, Vol.38 (23), p.9772-9782
Hauptverfasser: Kleinschmidt, Felix, Hickl, Markus, Saalwächter, Kay, Schmidt, Claudia, Finkelmann, Heino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9782
container_issue 23
container_start_page 9772
container_title Macromolecules
container_volume 38
creator Kleinschmidt, Felix
Hickl, Markus
Saalwächter, Kay
Schmidt, Claudia
Finkelmann, Heino
description The synthesis and characterization of anisotropic liquid single crystal hydrogels (LSCHs) via photoinduced radical polymerization of magnetically aligned samples in the lyotropic mesophase are reported, which are stable against tensile stresses in all three dimensions. The hydrogels exhibit a lamellar phase (Lα) in the swollen state. The high mechanical stability is achieved by using a new type of cross-linker. Monomer and cross-linker molecules have almost the same chemical constitution, varying only in the number of polymerizable groups. The cross-linker is incorporated perfectly into the liquid-crystalline phase structure of the lyotropic liquid-crystalline monomers, yielding a network which has covalent bridges between the lamellae. The anisotropic hydrogels are characterized by a variety of methods on micro- and macroscopic length scales. Swelling with the nonselective solvent toluene shows that cross-linking within the liquid-crystalline phase causes an anisotropic topology of the network, which shows a memory effect even in the isotropic phase. Time- and temperature-dependent pulsed field gradient diffusion NMR measurements yield a ratio of the order of 10:1 for the self-diffusion coefficients of D2O perpendicular and parallel to the layer normal. A step in the diffusivity across the lamellae at 312−314 K is interpreted by a disruption of the lamellae caused by elastic forces due to anisotropic network deformation as a function of temperature or by an increased porosity of the membranes in analogy to a lamellar-to-sponge transformation. Hygroelastic measurements, in which the length and width of the hydrogels are measured as a function of their controlled water sorption, show an anisotropic swelling behavior consistent with the structure of a lamellar phase. The isotropic-to-lamellar phase transformation upon increasing water concentration leads to a flattening of the polymer coil along the layer normal. Swelling with water in the lamellar phase is anisotropic.
doi_str_mv 10.1021/ma051479o
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma051479o</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a198773124</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-866a7952a4e872778b0664911fa0f553e2d2a499886652151a68fb03f530a4c83</originalsourceid><addsrcrecordid>eNptkL1OwzAUhS0EEqUw8AZeGBgCthMnNltVflopEkNBjNFtYhdXqV1sF5SNldfkSUhVRBemO5zvnHvvQeickitKGL1eAeE0K6Q7QAPKGUm4SPkhGhDCskQyWRyjkxCWhFDKs3SAYgkr1bbgcWneNqbBM2MXrcJj34UILZ50jXcL1Yab788vPOtsfFXBBAy2wVP7rkI0C4jGWew0HlkTXPRubWr8AlF5fGu03oStvDXMPvpVff4pOtLQBnX2O4fo-f7uaTxJyseH6XhUJsCEjInIcygkZ5ApUbCiEHOS55mkVAPRnKeKNb0mpehBziinkAs9J6nmKYGsFukQXe5ya-9C8EpXa29W4LuKkmpbV_VXV89e7Ng1hBpa7cHWJuwN_QGCcLHnoA7V0m287T_4J-8H7H13ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lamellar Liquid Single Crystal Hydrogels:  Synthesis and Investigation of Anisotropic Water Diffusion and Swelling</title><source>ACS Publications</source><creator>Kleinschmidt, Felix ; Hickl, Markus ; Saalwächter, Kay ; Schmidt, Claudia ; Finkelmann, Heino</creator><creatorcontrib>Kleinschmidt, Felix ; Hickl, Markus ; Saalwächter, Kay ; Schmidt, Claudia ; Finkelmann, Heino</creatorcontrib><description>The synthesis and characterization of anisotropic liquid single crystal hydrogels (LSCHs) via photoinduced radical polymerization of magnetically aligned samples in the lyotropic mesophase are reported, which are stable against tensile stresses in all three dimensions. The hydrogels exhibit a lamellar phase (Lα) in the swollen state. The high mechanical stability is achieved by using a new type of cross-linker. Monomer and cross-linker molecules have almost the same chemical constitution, varying only in the number of polymerizable groups. The cross-linker is incorporated perfectly into the liquid-crystalline phase structure of the lyotropic liquid-crystalline monomers, yielding a network which has covalent bridges between the lamellae. The anisotropic hydrogels are characterized by a variety of methods on micro- and macroscopic length scales. Swelling with the nonselective solvent toluene shows that cross-linking within the liquid-crystalline phase causes an anisotropic topology of the network, which shows a memory effect even in the isotropic phase. Time- and temperature-dependent pulsed field gradient diffusion NMR measurements yield a ratio of the order of 10:1 for the self-diffusion coefficients of D2O perpendicular and parallel to the layer normal. A step in the diffusivity across the lamellae at 312−314 K is interpreted by a disruption of the lamellae caused by elastic forces due to anisotropic network deformation as a function of temperature or by an increased porosity of the membranes in analogy to a lamellar-to-sponge transformation. Hygroelastic measurements, in which the length and width of the hydrogels are measured as a function of their controlled water sorption, show an anisotropic swelling behavior consistent with the structure of a lamellar phase. The isotropic-to-lamellar phase transformation upon increasing water concentration leads to a flattening of the polymer coil along the layer normal. Swelling with water in the lamellar phase is anisotropic.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma051479o</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Solution and gel properties</subject><ispartof>Macromolecules, 2005-11, Vol.38 (23), p.9772-9782</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-866a7952a4e872778b0664911fa0f553e2d2a499886652151a68fb03f530a4c83</citedby><cites>FETCH-LOGICAL-a289t-866a7952a4e872778b0664911fa0f553e2d2a499886652151a68fb03f530a4c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma051479o$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma051479o$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56715,56765</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17278058$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kleinschmidt, Felix</creatorcontrib><creatorcontrib>Hickl, Markus</creatorcontrib><creatorcontrib>Saalwächter, Kay</creatorcontrib><creatorcontrib>Schmidt, Claudia</creatorcontrib><creatorcontrib>Finkelmann, Heino</creatorcontrib><title>Lamellar Liquid Single Crystal Hydrogels:  Synthesis and Investigation of Anisotropic Water Diffusion and Swelling</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>The synthesis and characterization of anisotropic liquid single crystal hydrogels (LSCHs) via photoinduced radical polymerization of magnetically aligned samples in the lyotropic mesophase are reported, which are stable against tensile stresses in all three dimensions. The hydrogels exhibit a lamellar phase (Lα) in the swollen state. The high mechanical stability is achieved by using a new type of cross-linker. Monomer and cross-linker molecules have almost the same chemical constitution, varying only in the number of polymerizable groups. The cross-linker is incorporated perfectly into the liquid-crystalline phase structure of the lyotropic liquid-crystalline monomers, yielding a network which has covalent bridges between the lamellae. The anisotropic hydrogels are characterized by a variety of methods on micro- and macroscopic length scales. Swelling with the nonselective solvent toluene shows that cross-linking within the liquid-crystalline phase causes an anisotropic topology of the network, which shows a memory effect even in the isotropic phase. Time- and temperature-dependent pulsed field gradient diffusion NMR measurements yield a ratio of the order of 10:1 for the self-diffusion coefficients of D2O perpendicular and parallel to the layer normal. A step in the diffusivity across the lamellae at 312−314 K is interpreted by a disruption of the lamellae caused by elastic forces due to anisotropic network deformation as a function of temperature or by an increased porosity of the membranes in analogy to a lamellar-to-sponge transformation. Hygroelastic measurements, in which the length and width of the hydrogels are measured as a function of their controlled water sorption, show an anisotropic swelling behavior consistent with the structure of a lamellar phase. The isotropic-to-lamellar phase transformation upon increasing water concentration leads to a flattening of the polymer coil along the layer normal. Swelling with water in the lamellar phase is anisotropic.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Solution and gel properties</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAUhS0EEqUw8AZeGBgCthMnNltVflopEkNBjNFtYhdXqV1sF5SNldfkSUhVRBemO5zvnHvvQeickitKGL1eAeE0K6Q7QAPKGUm4SPkhGhDCskQyWRyjkxCWhFDKs3SAYgkr1bbgcWneNqbBM2MXrcJj34UILZ50jXcL1Yab788vPOtsfFXBBAy2wVP7rkI0C4jGWew0HlkTXPRubWr8AlF5fGu03oStvDXMPvpVff4pOtLQBnX2O4fo-f7uaTxJyseH6XhUJsCEjInIcygkZ5ApUbCiEHOS55mkVAPRnKeKNb0mpehBziinkAs9J6nmKYGsFukQXe5ya-9C8EpXa29W4LuKkmpbV_VXV89e7Ng1hBpa7cHWJuwN_QGCcLHnoA7V0m287T_4J-8H7H13ZQ</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Kleinschmidt, Felix</creator><creator>Hickl, Markus</creator><creator>Saalwächter, Kay</creator><creator>Schmidt, Claudia</creator><creator>Finkelmann, Heino</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051115</creationdate><title>Lamellar Liquid Single Crystal Hydrogels:  Synthesis and Investigation of Anisotropic Water Diffusion and Swelling</title><author>Kleinschmidt, Felix ; Hickl, Markus ; Saalwächter, Kay ; Schmidt, Claudia ; Finkelmann, Heino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-866a7952a4e872778b0664911fa0f553e2d2a499886652151a68fb03f530a4c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Solution and gel properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kleinschmidt, Felix</creatorcontrib><creatorcontrib>Hickl, Markus</creatorcontrib><creatorcontrib>Saalwächter, Kay</creatorcontrib><creatorcontrib>Schmidt, Claudia</creatorcontrib><creatorcontrib>Finkelmann, Heino</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kleinschmidt, Felix</au><au>Hickl, Markus</au><au>Saalwächter, Kay</au><au>Schmidt, Claudia</au><au>Finkelmann, Heino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lamellar Liquid Single Crystal Hydrogels:  Synthesis and Investigation of Anisotropic Water Diffusion and Swelling</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2005-11-15</date><risdate>2005</risdate><volume>38</volume><issue>23</issue><spage>9772</spage><epage>9782</epage><pages>9772-9782</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>The synthesis and characterization of anisotropic liquid single crystal hydrogels (LSCHs) via photoinduced radical polymerization of magnetically aligned samples in the lyotropic mesophase are reported, which are stable against tensile stresses in all three dimensions. The hydrogels exhibit a lamellar phase (Lα) in the swollen state. The high mechanical stability is achieved by using a new type of cross-linker. Monomer and cross-linker molecules have almost the same chemical constitution, varying only in the number of polymerizable groups. The cross-linker is incorporated perfectly into the liquid-crystalline phase structure of the lyotropic liquid-crystalline monomers, yielding a network which has covalent bridges between the lamellae. The anisotropic hydrogels are characterized by a variety of methods on micro- and macroscopic length scales. Swelling with the nonselective solvent toluene shows that cross-linking within the liquid-crystalline phase causes an anisotropic topology of the network, which shows a memory effect even in the isotropic phase. Time- and temperature-dependent pulsed field gradient diffusion NMR measurements yield a ratio of the order of 10:1 for the self-diffusion coefficients of D2O perpendicular and parallel to the layer normal. A step in the diffusivity across the lamellae at 312−314 K is interpreted by a disruption of the lamellae caused by elastic forces due to anisotropic network deformation as a function of temperature or by an increased porosity of the membranes in analogy to a lamellar-to-sponge transformation. Hygroelastic measurements, in which the length and width of the hydrogels are measured as a function of their controlled water sorption, show an anisotropic swelling behavior consistent with the structure of a lamellar phase. The isotropic-to-lamellar phase transformation upon increasing water concentration leads to a flattening of the polymer coil along the layer normal. Swelling with water in the lamellar phase is anisotropic.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma051479o</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2005-11, Vol.38 (23), p.9772-9782
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma051479o
source ACS Publications
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
Solution and gel properties
title Lamellar Liquid Single Crystal Hydrogels:  Synthesis and Investigation of Anisotropic Water Diffusion and Swelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lamellar%20Liquid%20Single%20Crystal%20Hydrogels:%E2%80%89%20Synthesis%20and%20Investigation%20of%20Anisotropic%20Water%20Diffusion%20and%20Swelling&rft.jtitle=Macromolecules&rft.au=Kleinschmidt,%20Felix&rft.date=2005-11-15&rft.volume=38&rft.issue=23&rft.spage=9772&rft.epage=9782&rft.pages=9772-9782&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma051479o&rft_dat=%3Cacs_cross%3Ea198773124%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true