Phase Behavior of Polystyrene-block-poly(n-alkyl methacrylate)s Dilated with Carbon Dioxide

The influence of carbon dioxide (CO2) sorption on the phase behavior of two polystyrene-block-poly(n-alkyl methacrylate) copolymers was studied. One, polystyrene-block-poly(n-hexyl methacrylate), P(S-b-nHMA), exhibits an order−disorder transition (ODT), whereas the other, polystyrene-block-poly(n-bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2003-06, Vol.36 (11), p.4029-4036
Hauptverfasser: Vogt, Bryan D, RamachandraRao, Vijayakumar S, Gupta, Ravi R, Lavery, Kristopher A, Francis, Timothy J, Russell, Thomas P, Watkins, James J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4036
container_issue 11
container_start_page 4029
container_title Macromolecules
container_volume 36
creator Vogt, Bryan D
RamachandraRao, Vijayakumar S
Gupta, Ravi R
Lavery, Kristopher A
Francis, Timothy J
Russell, Thomas P
Watkins, James J
description The influence of carbon dioxide (CO2) sorption on the phase behavior of two polystyrene-block-poly(n-alkyl methacrylate) copolymers was studied. One, polystyrene-block-poly(n-hexyl methacrylate), P(S-b-nHMA), exhibits an order−disorder transition (ODT), whereas the other, polystyrene-block-poly(n-butyl methacrylate), P(S-b-nBMA), exhibits a lower disorder−order transition (LDOT). CO2 sorption increases miscibility of the segments in P(S-b-nHMA) slightly:  the ODT is depressed by less than 7 °C at a CO2 fluid density of 0.25 g/cm3, which corresponds to 7 vol % dilation of the copolymer with CO2 at the conditions studied. In contrast, CO2 sorption decreased the miscibility of P(S-b-nBMA) markedly:  the LDOT was depressed by more than 70 °C at densities < 0.06 g/cm3, which corresponds to less than 3 vol % sorption of CO2. Unlike P(S-b-nHMA), ordering transitions in CO2-dilated P(S-b-nBMA) exhibit a pronounced thermal hysteresis that increases with increasing volume fraction of sorbed diluent. The hysteresis is a consequence of the sensitivity of the LDOT system to differences in CO2 sorption between the ordered and disordered states, as evidenced by neutron reflectivity measurements. The difference in the effect of CO2 sorption on the phase behavior of the copolymers is attributed to the different nature of the transitions. The entropically driven LDOT is depressed by differential dilation of the copolymer domains, which increases both the compressibility of the system and disparities in compressibility between the blocks. In contrast, the enthalpically driven ODT is depressed by the screening of segmental interactions by CO2 and is less sensitive to compressibility.
doi_str_mv 10.1021/ma0300544
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma0300544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c488650841</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-c2b8dd687d2ca126f060ed7e250c145fab81660876058885116da2d40f02c3f3</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EEqUw8A-yINHBcLZjxx2hQEEqohLdGKyL4yhp06SyAzT_nlRFdGG607vv3ukeIZcMbhhwdrtGEAAyjo_IgEkOVGohj8kAgMd0zMfJKTkLYQnAmIzFgHzMCwwuuncFfpWNj5o8mjdVF9rOu9rRtGrsim565bqmWK26Klq7tkDruwpbNwrRQ7lrsui7bItogj5t6l5rtmXmzslJjlVwF791SBZPj4vJM529TV8mdzOKgsuWWp7qLFM6ybhFxlUOClyWOC7BsljmmGqmFOhEgdRaS8ZUhjyLIQduRS6GZLS3tb4JwbvcbHy5Rt8ZBmYXivkLpWev9uwGg8Uq91jbMhwWYq0Szcc9R_dcGVq3_ZujXxmViESaxfzdvEox5fFMG3HwRRvMsvn0df_wP_d_ADDFe3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase Behavior of Polystyrene-block-poly(n-alkyl methacrylate)s Dilated with Carbon Dioxide</title><source>ACS Publications</source><creator>Vogt, Bryan D ; RamachandraRao, Vijayakumar S ; Gupta, Ravi R ; Lavery, Kristopher A ; Francis, Timothy J ; Russell, Thomas P ; Watkins, James J</creator><creatorcontrib>Vogt, Bryan D ; RamachandraRao, Vijayakumar S ; Gupta, Ravi R ; Lavery, Kristopher A ; Francis, Timothy J ; Russell, Thomas P ; Watkins, James J</creatorcontrib><description>The influence of carbon dioxide (CO2) sorption on the phase behavior of two polystyrene-block-poly(n-alkyl methacrylate) copolymers was studied. One, polystyrene-block-poly(n-hexyl methacrylate), P(S-b-nHMA), exhibits an order−disorder transition (ODT), whereas the other, polystyrene-block-poly(n-butyl methacrylate), P(S-b-nBMA), exhibits a lower disorder−order transition (LDOT). CO2 sorption increases miscibility of the segments in P(S-b-nHMA) slightly:  the ODT is depressed by less than 7 °C at a CO2 fluid density of 0.25 g/cm3, which corresponds to 7 vol % dilation of the copolymer with CO2 at the conditions studied. In contrast, CO2 sorption decreased the miscibility of P(S-b-nBMA) markedly:  the LDOT was depressed by more than 70 °C at densities &lt; 0.06 g/cm3, which corresponds to less than 3 vol % sorption of CO2. Unlike P(S-b-nHMA), ordering transitions in CO2-dilated P(S-b-nBMA) exhibit a pronounced thermal hysteresis that increases with increasing volume fraction of sorbed diluent. The hysteresis is a consequence of the sensitivity of the LDOT system to differences in CO2 sorption between the ordered and disordered states, as evidenced by neutron reflectivity measurements. The difference in the effect of CO2 sorption on the phase behavior of the copolymers is attributed to the different nature of the transitions. The entropically driven LDOT is depressed by differential dilation of the copolymer domains, which increases both the compressibility of the system and disparities in compressibility between the blocks. In contrast, the enthalpically driven ODT is depressed by the screening of segmental interactions by CO2 and is less sensitive to compressibility.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma0300544</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Thermal and thermodynamic properties</subject><ispartof>Macromolecules, 2003-06, Vol.36 (11), p.4029-4036</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-c2b8dd687d2ca126f060ed7e250c145fab81660876058885116da2d40f02c3f3</citedby><cites>FETCH-LOGICAL-a325t-c2b8dd687d2ca126f060ed7e250c145fab81660876058885116da2d40f02c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma0300544$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma0300544$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14867829$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogt, Bryan D</creatorcontrib><creatorcontrib>RamachandraRao, Vijayakumar S</creatorcontrib><creatorcontrib>Gupta, Ravi R</creatorcontrib><creatorcontrib>Lavery, Kristopher A</creatorcontrib><creatorcontrib>Francis, Timothy J</creatorcontrib><creatorcontrib>Russell, Thomas P</creatorcontrib><creatorcontrib>Watkins, James J</creatorcontrib><title>Phase Behavior of Polystyrene-block-poly(n-alkyl methacrylate)s Dilated with Carbon Dioxide</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>The influence of carbon dioxide (CO2) sorption on the phase behavior of two polystyrene-block-poly(n-alkyl methacrylate) copolymers was studied. One, polystyrene-block-poly(n-hexyl methacrylate), P(S-b-nHMA), exhibits an order−disorder transition (ODT), whereas the other, polystyrene-block-poly(n-butyl methacrylate), P(S-b-nBMA), exhibits a lower disorder−order transition (LDOT). CO2 sorption increases miscibility of the segments in P(S-b-nHMA) slightly:  the ODT is depressed by less than 7 °C at a CO2 fluid density of 0.25 g/cm3, which corresponds to 7 vol % dilation of the copolymer with CO2 at the conditions studied. In contrast, CO2 sorption decreased the miscibility of P(S-b-nBMA) markedly:  the LDOT was depressed by more than 70 °C at densities &lt; 0.06 g/cm3, which corresponds to less than 3 vol % sorption of CO2. Unlike P(S-b-nHMA), ordering transitions in CO2-dilated P(S-b-nBMA) exhibit a pronounced thermal hysteresis that increases with increasing volume fraction of sorbed diluent. The hysteresis is a consequence of the sensitivity of the LDOT system to differences in CO2 sorption between the ordered and disordered states, as evidenced by neutron reflectivity measurements. The difference in the effect of CO2 sorption on the phase behavior of the copolymers is attributed to the different nature of the transitions. The entropically driven LDOT is depressed by differential dilation of the copolymer domains, which increases both the compressibility of the system and disparities in compressibility between the blocks. In contrast, the enthalpically driven ODT is depressed by the screening of segmental interactions by CO2 and is less sensitive to compressibility.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Thermal and thermodynamic properties</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EEqUw8A-yINHBcLZjxx2hQEEqohLdGKyL4yhp06SyAzT_nlRFdGG607vv3ukeIZcMbhhwdrtGEAAyjo_IgEkOVGohj8kAgMd0zMfJKTkLYQnAmIzFgHzMCwwuuncFfpWNj5o8mjdVF9rOu9rRtGrsim565bqmWK26Klq7tkDruwpbNwrRQ7lrsui7bItogj5t6l5rtmXmzslJjlVwF791SBZPj4vJM529TV8mdzOKgsuWWp7qLFM6ybhFxlUOClyWOC7BsljmmGqmFOhEgdRaS8ZUhjyLIQduRS6GZLS3tb4JwbvcbHy5Rt8ZBmYXivkLpWev9uwGg8Uq91jbMhwWYq0Szcc9R_dcGVq3_ZujXxmViESaxfzdvEox5fFMG3HwRRvMsvn0df_wP_d_ADDFe3o</recordid><startdate>20030603</startdate><enddate>20030603</enddate><creator>Vogt, Bryan D</creator><creator>RamachandraRao, Vijayakumar S</creator><creator>Gupta, Ravi R</creator><creator>Lavery, Kristopher A</creator><creator>Francis, Timothy J</creator><creator>Russell, Thomas P</creator><creator>Watkins, James J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030603</creationdate><title>Phase Behavior of Polystyrene-block-poly(n-alkyl methacrylate)s Dilated with Carbon Dioxide</title><author>Vogt, Bryan D ; RamachandraRao, Vijayakumar S ; Gupta, Ravi R ; Lavery, Kristopher A ; Francis, Timothy J ; Russell, Thomas P ; Watkins, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-c2b8dd687d2ca126f060ed7e250c145fab81660876058885116da2d40f02c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Thermal and thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogt, Bryan D</creatorcontrib><creatorcontrib>RamachandraRao, Vijayakumar S</creatorcontrib><creatorcontrib>Gupta, Ravi R</creatorcontrib><creatorcontrib>Lavery, Kristopher A</creatorcontrib><creatorcontrib>Francis, Timothy J</creatorcontrib><creatorcontrib>Russell, Thomas P</creatorcontrib><creatorcontrib>Watkins, James J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogt, Bryan D</au><au>RamachandraRao, Vijayakumar S</au><au>Gupta, Ravi R</au><au>Lavery, Kristopher A</au><au>Francis, Timothy J</au><au>Russell, Thomas P</au><au>Watkins, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Behavior of Polystyrene-block-poly(n-alkyl methacrylate)s Dilated with Carbon Dioxide</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2003-06-03</date><risdate>2003</risdate><volume>36</volume><issue>11</issue><spage>4029</spage><epage>4036</epage><pages>4029-4036</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>The influence of carbon dioxide (CO2) sorption on the phase behavior of two polystyrene-block-poly(n-alkyl methacrylate) copolymers was studied. One, polystyrene-block-poly(n-hexyl methacrylate), P(S-b-nHMA), exhibits an order−disorder transition (ODT), whereas the other, polystyrene-block-poly(n-butyl methacrylate), P(S-b-nBMA), exhibits a lower disorder−order transition (LDOT). CO2 sorption increases miscibility of the segments in P(S-b-nHMA) slightly:  the ODT is depressed by less than 7 °C at a CO2 fluid density of 0.25 g/cm3, which corresponds to 7 vol % dilation of the copolymer with CO2 at the conditions studied. In contrast, CO2 sorption decreased the miscibility of P(S-b-nBMA) markedly:  the LDOT was depressed by more than 70 °C at densities &lt; 0.06 g/cm3, which corresponds to less than 3 vol % sorption of CO2. Unlike P(S-b-nHMA), ordering transitions in CO2-dilated P(S-b-nBMA) exhibit a pronounced thermal hysteresis that increases with increasing volume fraction of sorbed diluent. The hysteresis is a consequence of the sensitivity of the LDOT system to differences in CO2 sorption between the ordered and disordered states, as evidenced by neutron reflectivity measurements. The difference in the effect of CO2 sorption on the phase behavior of the copolymers is attributed to the different nature of the transitions. The entropically driven LDOT is depressed by differential dilation of the copolymer domains, which increases both the compressibility of the system and disparities in compressibility between the blocks. In contrast, the enthalpically driven ODT is depressed by the screening of segmental interactions by CO2 and is less sensitive to compressibility.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma0300544</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2003-06, Vol.36 (11), p.4029-4036
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma0300544
source ACS Publications
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
Thermal and thermodynamic properties
title Phase Behavior of Polystyrene-block-poly(n-alkyl methacrylate)s Dilated with Carbon Dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Behavior%20of%20Polystyrene-block-poly(n-alkyl%20methacrylate)s%20Dilated%20with%20Carbon%20Dioxide&rft.jtitle=Macromolecules&rft.au=Vogt,%20Bryan%20D&rft.date=2003-06-03&rft.volume=36&rft.issue=11&rft.spage=4029&rft.epage=4036&rft.pages=4029-4036&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma0300544&rft_dat=%3Cacs_cross%3Ec488650841%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true