Ultrathin Films of Poly(ethylene oxides) on Oxidized Silicon. 2. In Situ Study of Crystallization and Melting by Hot Stage AFM

We report on the isothermal crystallization behavior of thin (film thickness d < 500 nm) and ultrathin (d < 100 nm) films of poly(ethylene oxide) (PEO), as well as pyrene end-labeled PEO, on native silicon studied by in situ hot stage atomic force microscopy (AFM). Individual lamellae were ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2003-02, Vol.36 (4), p.1199-1208
Hauptverfasser: Schönherr, Holger, Frank, Curtis W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1208
container_issue 4
container_start_page 1199
container_title Macromolecules
container_volume 36
creator Schönherr, Holger
Frank, Curtis W
description We report on the isothermal crystallization behavior of thin (film thickness d < 500 nm) and ultrathin (d < 100 nm) films of poly(ethylene oxide) (PEO), as well as pyrene end-labeled PEO, on native silicon studied by in situ hot stage atomic force microscopy (AFM). Individual lamellae were imaged during crystallization and melting. Using AFM, we have directly measured lamellar growth rates, lamellar thicknesses, and melting ranges as a function of film thickness (ca. 15−>500 nm), crystallization temperature (40−62 °C), and molar mass (11−100 kg/mol). On the basis of the Hoffman−Weeks extrapolation, the Gibbs−Thomson equation, and the Hoffman−Lauritzen theory, we show that the crystallization of PEO in thin and ultrathin films can be described with the same laws as the bulk crystallization. In addition, we find that the equilibrium melting points and surface free energies of the fold surfaces agree quantitatively with literature data for bulk crystallization and hence are not altered due to confinement in ultrathin films. However, there is a monotonic decrease of lamellar growth rates with decreasing film thickness for films thinner than ca. 250 nm. The growth rates decrease to below 1% of their bulk value in the thinnest films; this is attributed to an increase in glass transition temperature of up to 30 °C for the confined PEO and the concomitant reduction of molecular mobility.
doi_str_mv 10.1021/ma020686a
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma020686a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a765523860</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-d149be76e6938262a976ecf61751a3fdf4a4b5a0979e706b5563306c55c19fbd3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWD8O_oNcBD1szccm2xy1tVqwKFRBvITZ3axG06wkKbge_O1uqejF07zDPO8M8yJ0RMmQEkbPlkAYkSMJW2hABSOZGHGxjQaEsDxTTBW7aC_GV0IoFTkfoK8HlwKkF-vx1LplxG2D71rXnZj00jnjDW4_bG3iKW49vu2l_TQ1Xlhnq9YPMRvime_btMKLtKq7tX0cupjAOfsJyfYu8DWeG5esf8Zlh6_b1LPwbPD5dH6Adhpw0Rz-1H30ML28H19nN7dXs_H5TQZc0ZTVNFelKaSRio-YZKB6XTWSFoICb-omh7wUQFShTEFkKYTknMhKiIqqpqz5Pjrd7K1CG2MwjX4Pdgmh05TodXD6N7iePd6w7xArcE0AX9n4Z8iFYoTTnss2nI3JfPzOIbxpWfBC6Pu7hZ485ReTfM71499eqKJ-bVfB9x__c_8b0qKH2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrathin Films of Poly(ethylene oxides) on Oxidized Silicon. 2. In Situ Study of Crystallization and Melting by Hot Stage AFM</title><source>American Chemical Society</source><creator>Schönherr, Holger ; Frank, Curtis W</creator><creatorcontrib>Schönherr, Holger ; Frank, Curtis W</creatorcontrib><description>We report on the isothermal crystallization behavior of thin (film thickness d &lt; 500 nm) and ultrathin (d &lt; 100 nm) films of poly(ethylene oxide) (PEO), as well as pyrene end-labeled PEO, on native silicon studied by in situ hot stage atomic force microscopy (AFM). Individual lamellae were imaged during crystallization and melting. Using AFM, we have directly measured lamellar growth rates, lamellar thicknesses, and melting ranges as a function of film thickness (ca. 15−&gt;500 nm), crystallization temperature (40−62 °C), and molar mass (11−100 kg/mol). On the basis of the Hoffman−Weeks extrapolation, the Gibbs−Thomson equation, and the Hoffman−Lauritzen theory, we show that the crystallization of PEO in thin and ultrathin films can be described with the same laws as the bulk crystallization. In addition, we find that the equilibrium melting points and surface free energies of the fold surfaces agree quantitatively with literature data for bulk crystallization and hence are not altered due to confinement in ultrathin films. However, there is a monotonic decrease of lamellar growth rates with decreasing film thickness for films thinner than ca. 250 nm. The growth rates decrease to below 1% of their bulk value in the thinnest films; this is attributed to an increase in glass transition temperature of up to 30 °C for the confined PEO and the concomitant reduction of molecular mobility.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma020686a</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Crystallization ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization</subject><ispartof>Macromolecules, 2003-02, Vol.36 (4), p.1199-1208</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-d149be76e6938262a976ecf61751a3fdf4a4b5a0979e706b5563306c55c19fbd3</citedby><cites>FETCH-LOGICAL-a391t-d149be76e6938262a976ecf61751a3fdf4a4b5a0979e706b5563306c55c19fbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma020686a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma020686a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14592031$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schönherr, Holger</creatorcontrib><creatorcontrib>Frank, Curtis W</creatorcontrib><title>Ultrathin Films of Poly(ethylene oxides) on Oxidized Silicon. 2. In Situ Study of Crystallization and Melting by Hot Stage AFM</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>We report on the isothermal crystallization behavior of thin (film thickness d &lt; 500 nm) and ultrathin (d &lt; 100 nm) films of poly(ethylene oxide) (PEO), as well as pyrene end-labeled PEO, on native silicon studied by in situ hot stage atomic force microscopy (AFM). Individual lamellae were imaged during crystallization and melting. Using AFM, we have directly measured lamellar growth rates, lamellar thicknesses, and melting ranges as a function of film thickness (ca. 15−&gt;500 nm), crystallization temperature (40−62 °C), and molar mass (11−100 kg/mol). On the basis of the Hoffman−Weeks extrapolation, the Gibbs−Thomson equation, and the Hoffman−Lauritzen theory, we show that the crystallization of PEO in thin and ultrathin films can be described with the same laws as the bulk crystallization. In addition, we find that the equilibrium melting points and surface free energies of the fold surfaces agree quantitatively with literature data for bulk crystallization and hence are not altered due to confinement in ultrathin films. However, there is a monotonic decrease of lamellar growth rates with decreasing film thickness for films thinner than ca. 250 nm. The growth rates decrease to below 1% of their bulk value in the thinnest films; this is attributed to an increase in glass transition temperature of up to 30 °C for the confined PEO and the concomitant reduction of molecular mobility.</description><subject>Applied sciences</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWD8O_oNcBD1szccm2xy1tVqwKFRBvITZ3axG06wkKbge_O1uqejF07zDPO8M8yJ0RMmQEkbPlkAYkSMJW2hABSOZGHGxjQaEsDxTTBW7aC_GV0IoFTkfoK8HlwKkF-vx1LplxG2D71rXnZj00jnjDW4_bG3iKW49vu2l_TQ1Xlhnq9YPMRvime_btMKLtKq7tX0cupjAOfsJyfYu8DWeG5esf8Zlh6_b1LPwbPD5dH6Adhpw0Rz-1H30ML28H19nN7dXs_H5TQZc0ZTVNFelKaSRio-YZKB6XTWSFoICb-omh7wUQFShTEFkKYTknMhKiIqqpqz5Pjrd7K1CG2MwjX4Pdgmh05TodXD6N7iePd6w7xArcE0AX9n4Z8iFYoTTnss2nI3JfPzOIbxpWfBC6Pu7hZ485ReTfM71499eqKJ-bVfB9x__c_8b0qKH2A</recordid><startdate>20030225</startdate><enddate>20030225</enddate><creator>Schönherr, Holger</creator><creator>Frank, Curtis W</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030225</creationdate><title>Ultrathin Films of Poly(ethylene oxides) on Oxidized Silicon. 2. In Situ Study of Crystallization and Melting by Hot Stage AFM</title><author>Schönherr, Holger ; Frank, Curtis W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-d149be76e6938262a976ecf61751a3fdf4a4b5a0979e706b5563306c55c19fbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schönherr, Holger</creatorcontrib><creatorcontrib>Frank, Curtis W</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schönherr, Holger</au><au>Frank, Curtis W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Films of Poly(ethylene oxides) on Oxidized Silicon. 2. In Situ Study of Crystallization and Melting by Hot Stage AFM</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2003-02-25</date><risdate>2003</risdate><volume>36</volume><issue>4</issue><spage>1199</spage><epage>1208</epage><pages>1199-1208</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>We report on the isothermal crystallization behavior of thin (film thickness d &lt; 500 nm) and ultrathin (d &lt; 100 nm) films of poly(ethylene oxide) (PEO), as well as pyrene end-labeled PEO, on native silicon studied by in situ hot stage atomic force microscopy (AFM). Individual lamellae were imaged during crystallization and melting. Using AFM, we have directly measured lamellar growth rates, lamellar thicknesses, and melting ranges as a function of film thickness (ca. 15−&gt;500 nm), crystallization temperature (40−62 °C), and molar mass (11−100 kg/mol). On the basis of the Hoffman−Weeks extrapolation, the Gibbs−Thomson equation, and the Hoffman−Lauritzen theory, we show that the crystallization of PEO in thin and ultrathin films can be described with the same laws as the bulk crystallization. In addition, we find that the equilibrium melting points and surface free energies of the fold surfaces agree quantitatively with literature data for bulk crystallization and hence are not altered due to confinement in ultrathin films. However, there is a monotonic decrease of lamellar growth rates with decreasing film thickness for films thinner than ca. 250 nm. The growth rates decrease to below 1% of their bulk value in the thinnest films; this is attributed to an increase in glass transition temperature of up to 30 °C for the confined PEO and the concomitant reduction of molecular mobility.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma020686a</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2003-02, Vol.36 (4), p.1199-1208
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma020686a
source American Chemical Society
subjects Applied sciences
Crystallization
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
title Ultrathin Films of Poly(ethylene oxides) on Oxidized Silicon. 2. In Situ Study of Crystallization and Melting by Hot Stage AFM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Films%20of%20Poly(ethylene%20oxides)%20on%20Oxidized%20Silicon.%202.%20In%20Situ%20Study%20of%20Crystallization%20and%20Melting%20by%20Hot%20Stage%20AFM&rft.jtitle=Macromolecules&rft.au=Sch%C3%B6nherr,%20Holger&rft.date=2003-02-25&rft.volume=36&rft.issue=4&rft.spage=1199&rft.epage=1208&rft.pages=1199-1208&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma020686a&rft_dat=%3Cacs_cross%3Ea765523860%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true