Synthesis of Styrene−Acrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization

Atom transfer radical polymerization (ATRP) was successfully applied to the synthesis of styrene−acrylonitrile (SAN) copolymers of predetermined molecular weights and low polydispersities. The monomers were copolymerized under azeotropic conditions (ca. 63 mol % styrene and 37 mol % acrylonitrile) i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2002-07, Vol.35 (16), p.6142-6148
Hauptverfasser: Tsarevsky, Nicolay V, Sarbu, Traian, Göbelt, Bernd, Matyjaszewski, Krzysztof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6148
container_issue 16
container_start_page 6142
container_title Macromolecules
container_volume 35
creator Tsarevsky, Nicolay V
Sarbu, Traian
Göbelt, Bernd
Matyjaszewski, Krzysztof
description Atom transfer radical polymerization (ATRP) was successfully applied to the synthesis of styrene−acrylonitrile (SAN) copolymers of predetermined molecular weights and low polydispersities. The monomers were copolymerized under azeotropic conditions (ca. 63 mol % styrene and 37 mol % acrylonitrile) in bulk using mono- and difunctional alkyl halide initiators such as 2-bromopropionitrile, 1-phenylethyl bromide, methyl 2-bromopropionate, poly(ethylene oxide) monomethyl ether 2-bromopropionate, and the bis(2-bromopropionate) esters derived from poly(ethylene oxide), poly(propylene oxide), or poly(ε-caprolactone) diols of various molecular weights in combination with two catalytic systems:  CuBr/2,2‘-bipyridine (bpy) and CuBr/N,N,N‘,N‘ ‘,N‘ ‘-pentamethyldiethylenetriamine (PMDETA). The synthesized copolymers had high chain end-functionalities, as proven by further chain extension with styrene, n-butyl, tert-butyl, or glycidyl acrylate, and methyl methacrylate. In the last case, the reaction in the presence of CuBr/bpy led to a block copolymer of high polydispersity, which was decreased to M w/M n = 1.5 using halogen exchange (i.e., CuCl/bpy as the catalytic system). All other block copolymers (including di-, tri-, and pentablock copolymers) had narrow molecular weight distributions (M w/M n = 1.1−1.4).
doi_str_mv 10.1021/ma020560d
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma020560d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h23911129</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-2b502ad5141933913038254ff01cdef623272bf2702b84985f31fec6a9c7b91b3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EEqWw4A-8YcEi4Eecx7JEvKQKSlvWluPYwm0SV7aRCF_Amk_kSwgKalmwGmnmzJ25F4BTjC4wIviyEYgglqBqD4wwIyhiGWX7YIQQiaOc5OkhOPJ-hRDGLKYjEBZdG16UNx5aDRehc6pVXx-fE-m62rYmOFMrWNiNrbtGOQ9FW8G5qkVQFbyqrVz_HZYdnATbwKUTrdfKwbmojBQ1nA2EeRfB2PYYHGhRe3XyW8fg-eZ6WdxF08fb-2IyjQTNcYhIyRARFcMxzmnfoYhmhMVaIywrpRNCSUpKTVJEyizOM6Yp1komIpdpmeOSjsH5oCud9d4pzTfONMJ1HCP-ExffxtWzZwO7Eb7_WPcOpPG7BZr1gcW056KBMz6ot-1cuDVPUpoyvpwteFY8PKVFPOVopyuk5yv76tre8T_3vwEsrodW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis of Styrene−Acrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization</title><source>American Chemical Society Journals</source><creator>Tsarevsky, Nicolay V ; Sarbu, Traian ; Göbelt, Bernd ; Matyjaszewski, Krzysztof</creator><creatorcontrib>Tsarevsky, Nicolay V ; Sarbu, Traian ; Göbelt, Bernd ; Matyjaszewski, Krzysztof</creatorcontrib><description>Atom transfer radical polymerization (ATRP) was successfully applied to the synthesis of styrene−acrylonitrile (SAN) copolymers of predetermined molecular weights and low polydispersities. The monomers were copolymerized under azeotropic conditions (ca. 63 mol % styrene and 37 mol % acrylonitrile) in bulk using mono- and difunctional alkyl halide initiators such as 2-bromopropionitrile, 1-phenylethyl bromide, methyl 2-bromopropionate, poly(ethylene oxide) monomethyl ether 2-bromopropionate, and the bis(2-bromopropionate) esters derived from poly(ethylene oxide), poly(propylene oxide), or poly(ε-caprolactone) diols of various molecular weights in combination with two catalytic systems:  CuBr/2,2‘-bipyridine (bpy) and CuBr/N,N,N‘,N‘ ‘,N‘ ‘-pentamethyldiethylenetriamine (PMDETA). The synthesized copolymers had high chain end-functionalities, as proven by further chain extension with styrene, n-butyl, tert-butyl, or glycidyl acrylate, and methyl methacrylate. In the last case, the reaction in the presence of CuBr/bpy led to a block copolymer of high polydispersity, which was decreased to M w/M n = 1.5 using halogen exchange (i.e., CuCl/bpy as the catalytic system). All other block copolymers (including di-, tri-, and pentablock copolymers) had narrow molecular weight distributions (M w/M n = 1.1−1.4).</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma020560d</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Copolymerization ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><ispartof>Macromolecules, 2002-07, Vol.35 (16), p.6142-6148</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-2b502ad5141933913038254ff01cdef623272bf2702b84985f31fec6a9c7b91b3</citedby><cites>FETCH-LOGICAL-a391t-2b502ad5141933913038254ff01cdef623272bf2702b84985f31fec6a9c7b91b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma020560d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma020560d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13815443$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsarevsky, Nicolay V</creatorcontrib><creatorcontrib>Sarbu, Traian</creatorcontrib><creatorcontrib>Göbelt, Bernd</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><title>Synthesis of Styrene−Acrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>Atom transfer radical polymerization (ATRP) was successfully applied to the synthesis of styrene−acrylonitrile (SAN) copolymers of predetermined molecular weights and low polydispersities. The monomers were copolymerized under azeotropic conditions (ca. 63 mol % styrene and 37 mol % acrylonitrile) in bulk using mono- and difunctional alkyl halide initiators such as 2-bromopropionitrile, 1-phenylethyl bromide, methyl 2-bromopropionate, poly(ethylene oxide) monomethyl ether 2-bromopropionate, and the bis(2-bromopropionate) esters derived from poly(ethylene oxide), poly(propylene oxide), or poly(ε-caprolactone) diols of various molecular weights in combination with two catalytic systems:  CuBr/2,2‘-bipyridine (bpy) and CuBr/N,N,N‘,N‘ ‘,N‘ ‘-pentamethyldiethylenetriamine (PMDETA). The synthesized copolymers had high chain end-functionalities, as proven by further chain extension with styrene, n-butyl, tert-butyl, or glycidyl acrylate, and methyl methacrylate. In the last case, the reaction in the presence of CuBr/bpy led to a block copolymer of high polydispersity, which was decreased to M w/M n = 1.5 using halogen exchange (i.e., CuCl/bpy as the catalytic system). All other block copolymers (including di-, tri-, and pentablock copolymers) had narrow molecular weight distributions (M w/M n = 1.1−1.4).</description><subject>Applied sciences</subject><subject>Copolymerization</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EEqWw4A-8YcEi4Eecx7JEvKQKSlvWluPYwm0SV7aRCF_Amk_kSwgKalmwGmnmzJ25F4BTjC4wIviyEYgglqBqD4wwIyhiGWX7YIQQiaOc5OkhOPJ-hRDGLKYjEBZdG16UNx5aDRehc6pVXx-fE-m62rYmOFMrWNiNrbtGOQ9FW8G5qkVQFbyqrVz_HZYdnATbwKUTrdfKwbmojBQ1nA2EeRfB2PYYHGhRe3XyW8fg-eZ6WdxF08fb-2IyjQTNcYhIyRARFcMxzmnfoYhmhMVaIywrpRNCSUpKTVJEyizOM6Yp1komIpdpmeOSjsH5oCud9d4pzTfONMJ1HCP-ExffxtWzZwO7Eb7_WPcOpPG7BZr1gcW056KBMz6ot-1cuDVPUpoyvpwteFY8PKVFPOVopyuk5yv76tre8T_3vwEsrodW</recordid><startdate>20020730</startdate><enddate>20020730</enddate><creator>Tsarevsky, Nicolay V</creator><creator>Sarbu, Traian</creator><creator>Göbelt, Bernd</creator><creator>Matyjaszewski, Krzysztof</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020730</creationdate><title>Synthesis of Styrene−Acrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization</title><author>Tsarevsky, Nicolay V ; Sarbu, Traian ; Göbelt, Bernd ; Matyjaszewski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-2b502ad5141933913038254ff01cdef623272bf2702b84985f31fec6a9c7b91b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Copolymerization</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsarevsky, Nicolay V</creatorcontrib><creatorcontrib>Sarbu, Traian</creatorcontrib><creatorcontrib>Göbelt, Bernd</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsarevsky, Nicolay V</au><au>Sarbu, Traian</au><au>Göbelt, Bernd</au><au>Matyjaszewski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Styrene−Acrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2002-07-30</date><risdate>2002</risdate><volume>35</volume><issue>16</issue><spage>6142</spage><epage>6148</epage><pages>6142-6148</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>Atom transfer radical polymerization (ATRP) was successfully applied to the synthesis of styrene−acrylonitrile (SAN) copolymers of predetermined molecular weights and low polydispersities. The monomers were copolymerized under azeotropic conditions (ca. 63 mol % styrene and 37 mol % acrylonitrile) in bulk using mono- and difunctional alkyl halide initiators such as 2-bromopropionitrile, 1-phenylethyl bromide, methyl 2-bromopropionate, poly(ethylene oxide) monomethyl ether 2-bromopropionate, and the bis(2-bromopropionate) esters derived from poly(ethylene oxide), poly(propylene oxide), or poly(ε-caprolactone) diols of various molecular weights in combination with two catalytic systems:  CuBr/2,2‘-bipyridine (bpy) and CuBr/N,N,N‘,N‘ ‘,N‘ ‘-pentamethyldiethylenetriamine (PMDETA). The synthesized copolymers had high chain end-functionalities, as proven by further chain extension with styrene, n-butyl, tert-butyl, or glycidyl acrylate, and methyl methacrylate. In the last case, the reaction in the presence of CuBr/bpy led to a block copolymer of high polydispersity, which was decreased to M w/M n = 1.5 using halogen exchange (i.e., CuCl/bpy as the catalytic system). All other block copolymers (including di-, tri-, and pentablock copolymers) had narrow molecular weight distributions (M w/M n = 1.1−1.4).</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma020560d</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2002-07, Vol.35 (16), p.6142-6148
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma020560d
source American Chemical Society Journals
subjects Applied sciences
Copolymerization
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Preparation, kinetics, thermodynamics, mechanism and catalysts
title Synthesis of Styrene−Acrylonitrile Copolymers and Related Block Copolymers by Atom Transfer Radical Polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Styrene%E2%88%92Acrylonitrile%20Copolymers%20and%20Related%20Block%20Copolymers%20by%20Atom%20Transfer%20Radical%20Polymerization&rft.jtitle=Macromolecules&rft.au=Tsarevsky,%20Nicolay%20V&rft.date=2002-07-30&rft.volume=35&rft.issue=16&rft.spage=6142&rft.epage=6148&rft.pages=6142-6148&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma020560d&rft_dat=%3Cacs_cross%3Eh23911129%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true