Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined

We examined the melt and solid-state structures of a series of diblock copolymers containing polyethylene as the minority block, with a rubbery hydrocarbon majority block. When the interblock segregation strength during crystallization is sufficiently high (approximately 3 times the segregation stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2002-03, Vol.35 (6), p.2365-2374
Hauptverfasser: Loo, Yueh-Lin, Register, Richard A, Ryan, Anthony J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2374
container_issue 6
container_start_page 2365
container_title Macromolecules
container_volume 35
creator Loo, Yueh-Lin
Register, Richard A
Ryan, Anthony J
description We examined the melt and solid-state structures of a series of diblock copolymers containing polyethylene as the minority block, with a rubbery hydrocarbon majority block. When the interblock segregation strength during crystallization is sufficiently high (approximately 3 times the segregation strength at the order−disorder transition), crystallization can be effectively confined within spherical domains formed by microphase separation in the melt; the process is homogeneously nucleated, and the resulting kinetics are first-order (Avrami n = 1). Below this critical interblock segregation strength, crystallization disrupts the spherical microdomains, resulting in sigmoidal kinetics (n > 1). Cylinder-forming materials are more complex:  there exists a range of intermediate segregation strength where crystallization is templated but not wholly confined within the nanoscale domains prescribed by microphase separation; while the melt morphology is generally retained on cooling, local distortions and connections between cylinders occur due to crystallization. These intercylinder connections allow the material initially contained within several cylinders to be crystallized by a single nucleus, producing sigmoidal kinetics and a dramatic acceleration of the overall crystallization rate, despite the general preservation of the cylindrical structure.
doi_str_mv 10.1021/ma011824j
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma011824j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_T65L5WJV_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-4d0dc94a3a54a9e68075ee0af8a1ea5550289bee4e6e7335cabeac1880b20e0b3</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EEqVw4A184YDUgB3H-eFGI37VCiQC3LA2yUZym8SVnUqUE1dekychqKi9cNrDfjOzO4Qcc3bGmc_PG2Ccx34w2yEDLn3myVjIXTJgzA-8xE-ifXLg3Iz1lAzEgLxNTYmOmoqmduU6qGv9AZ02LdUtHdemmNPULEy9atDSqS6sKU0DunUX359fdGwR5mbZjWiGzaKGDssRhbbsNW2lWywPyV4FtcOjvzkkz9dXWXrrTR5u7tLLiQci4Z0XlKwskgAEyAASDGMWSUQGVQwcQUrJ_DjJEQMMMRJCFpAjFDyOWe4zZLkYktO1b3-gcxYrtbC6AbtSnKnfYtSmmJ49WbMLcAXUlYW20G4rEFLyPr_nvDWnXYfvmz3YuQojEUmVPT6pLJQT-Xr_osKtLxROzczStv3H_-T_AHBZf4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined</title><source>ACS Publications</source><creator>Loo, Yueh-Lin ; Register, Richard A ; Ryan, Anthony J</creator><creatorcontrib>Loo, Yueh-Lin ; Register, Richard A ; Ryan, Anthony J</creatorcontrib><description>We examined the melt and solid-state structures of a series of diblock copolymers containing polyethylene as the minority block, with a rubbery hydrocarbon majority block. When the interblock segregation strength during crystallization is sufficiently high (approximately 3 times the segregation strength at the order−disorder transition), crystallization can be effectively confined within spherical domains formed by microphase separation in the melt; the process is homogeneously nucleated, and the resulting kinetics are first-order (Avrami n = 1). Below this critical interblock segregation strength, crystallization disrupts the spherical microdomains, resulting in sigmoidal kinetics (n &gt; 1). Cylinder-forming materials are more complex:  there exists a range of intermediate segregation strength where crystallization is templated but not wholly confined within the nanoscale domains prescribed by microphase separation; while the melt morphology is generally retained on cooling, local distortions and connections between cylinders occur due to crystallization. These intercylinder connections allow the material initially contained within several cylinders to be crystallized by a single nucleus, producing sigmoidal kinetics and a dramatic acceleration of the overall crystallization rate, despite the general preservation of the cylindrical structure.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma011824j</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Crystallization ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization</subject><ispartof>Macromolecules, 2002-03, Vol.35 (6), p.2365-2374</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-4d0dc94a3a54a9e68075ee0af8a1ea5550289bee4e6e7335cabeac1880b20e0b3</citedby><cites>FETCH-LOGICAL-a391t-4d0dc94a3a54a9e68075ee0af8a1ea5550289bee4e6e7335cabeac1880b20e0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma011824j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma011824j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13551075$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Loo, Yueh-Lin</creatorcontrib><creatorcontrib>Register, Richard A</creatorcontrib><creatorcontrib>Ryan, Anthony J</creatorcontrib><title>Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>We examined the melt and solid-state structures of a series of diblock copolymers containing polyethylene as the minority block, with a rubbery hydrocarbon majority block. When the interblock segregation strength during crystallization is sufficiently high (approximately 3 times the segregation strength at the order−disorder transition), crystallization can be effectively confined within spherical domains formed by microphase separation in the melt; the process is homogeneously nucleated, and the resulting kinetics are first-order (Avrami n = 1). Below this critical interblock segregation strength, crystallization disrupts the spherical microdomains, resulting in sigmoidal kinetics (n &gt; 1). Cylinder-forming materials are more complex:  there exists a range of intermediate segregation strength where crystallization is templated but not wholly confined within the nanoscale domains prescribed by microphase separation; while the melt morphology is generally retained on cooling, local distortions and connections between cylinders occur due to crystallization. These intercylinder connections allow the material initially contained within several cylinders to be crystallized by a single nucleus, producing sigmoidal kinetics and a dramatic acceleration of the overall crystallization rate, despite the general preservation of the cylindrical structure.</description><subject>Applied sciences</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkM1OwzAQhC0EEqVw4A184YDUgB3H-eFGI37VCiQC3LA2yUZym8SVnUqUE1dekychqKi9cNrDfjOzO4Qcc3bGmc_PG2Ccx34w2yEDLn3myVjIXTJgzA-8xE-ifXLg3Iz1lAzEgLxNTYmOmoqmduU6qGv9AZ02LdUtHdemmNPULEy9atDSqS6sKU0DunUX359fdGwR5mbZjWiGzaKGDssRhbbsNW2lWywPyV4FtcOjvzkkz9dXWXrrTR5u7tLLiQci4Z0XlKwskgAEyAASDGMWSUQGVQwcQUrJ_DjJEQMMMRJCFpAjFDyOWe4zZLkYktO1b3-gcxYrtbC6AbtSnKnfYtSmmJ49WbMLcAXUlYW20G4rEFLyPr_nvDWnXYfvmz3YuQojEUmVPT6pLJQT-Xr_osKtLxROzczStv3H_-T_AHBZf4M</recordid><startdate>20020312</startdate><enddate>20020312</enddate><creator>Loo, Yueh-Lin</creator><creator>Register, Richard A</creator><creator>Ryan, Anthony J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020312</creationdate><title>Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined</title><author>Loo, Yueh-Lin ; Register, Richard A ; Ryan, Anthony J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-4d0dc94a3a54a9e68075ee0af8a1ea5550289bee4e6e7335cabeac1880b20e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loo, Yueh-Lin</creatorcontrib><creatorcontrib>Register, Richard A</creatorcontrib><creatorcontrib>Ryan, Anthony J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loo, Yueh-Lin</au><au>Register, Richard A</au><au>Ryan, Anthony J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2002-03-12</date><risdate>2002</risdate><volume>35</volume><issue>6</issue><spage>2365</spage><epage>2374</epage><pages>2365-2374</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>We examined the melt and solid-state structures of a series of diblock copolymers containing polyethylene as the minority block, with a rubbery hydrocarbon majority block. When the interblock segregation strength during crystallization is sufficiently high (approximately 3 times the segregation strength at the order−disorder transition), crystallization can be effectively confined within spherical domains formed by microphase separation in the melt; the process is homogeneously nucleated, and the resulting kinetics are first-order (Avrami n = 1). Below this critical interblock segregation strength, crystallization disrupts the spherical microdomains, resulting in sigmoidal kinetics (n &gt; 1). Cylinder-forming materials are more complex:  there exists a range of intermediate segregation strength where crystallization is templated but not wholly confined within the nanoscale domains prescribed by microphase separation; while the melt morphology is generally retained on cooling, local distortions and connections between cylinders occur due to crystallization. These intercylinder connections allow the material initially contained within several cylinders to be crystallized by a single nucleus, producing sigmoidal kinetics and a dramatic acceleration of the overall crystallization rate, despite the general preservation of the cylindrical structure.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma011824j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2002-03, Vol.35 (6), p.2365-2374
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma011824j
source ACS Publications
subjects Applied sciences
Crystallization
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
title Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modes%20of%20Crystallization%20in%20Block%20Copolymer%20Microdomains:%E2%80%89%20Breakout,%20Templated,%20and%20Confined&rft.jtitle=Macromolecules&rft.au=Loo,%20Yueh-Lin&rft.date=2002-03-12&rft.volume=35&rft.issue=6&rft.spage=2365&rft.epage=2374&rft.pages=2365-2374&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma011824j&rft_dat=%3Cistex_cross%3Eark_67375_TPS_T65L5WJV_6%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true