Microrheological Modeling of Flow-Induced Crystallization

The problem of flow-induced crystallization (FIC) of polymer melts is addressed via a microrheological approach. In particular, the Doi−Edwards model with the so-called independent alignment approximation (DE−IAA) is used to calculate the flow-induced change of free energy. Subsequently, the crystal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2001-07, Vol.34 (14), p.5030-5036
Hauptverfasser: Coppola, Salvatore, Grizzuti, Nino, Maffettone, Pier Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5036
container_issue 14
container_start_page 5030
container_title Macromolecules
container_volume 34
creator Coppola, Salvatore
Grizzuti, Nino
Maffettone, Pier Luca
description The problem of flow-induced crystallization (FIC) of polymer melts is addressed via a microrheological approach. In particular, the Doi−Edwards model with the so-called independent alignment approximation (DE−IAA) is used to calculate the flow-induced change of free energy. Subsequently, the crystallization induction time, i.e., the nucleation characteristic time, is calculated in isothermal steady shear and uniaxial elongational flows. Asymptotic, analytical expressions for the induction time are also derived in the limit of low and high Deborah number (the product of the deformation rate and the polymer relaxation time). The DE−IAA model is found to give more realistic predictions than those of simpler, dumbbell-like models already proposed in the literature. When compared to existing FIC experimental data in shear flow, good quantitative agreement is found with the polymer relaxation time as the only adjustable parameter of the model.
doi_str_mv 10.1021/ma010275e
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma010275e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_LCSRP8F8_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-3acca2e5f30a1e76cc5fa5ba4b1d0b186a34db4c160e733e0dcfabe0ebea8f203</originalsourceid><addsrcrecordid>eNptj7FOwzAQhi0EEqUw8AYZYGAInOM4TkcUUajUioqW2bo4dnFJ48pOBeXpCQqqGJj-4b7_7j5CLincUkjo3QahS8H1ERlQnkDMc8aPyQAgSeNRMhKn5CyENQClPGUDMppZ5Z1_0652K6uwjmau0rVtVpEz0bh2H_GkqXZKV1Hh96HFurZf2FrXnJMTg3XQF785JK_jh2XxFE-fHyfF_TRGlqRtzFApTDQ3DJBqkSnFDfIS05JWUNI8Q5ZWZapoBlowpqFSBksNutSYmwTYkNz0e7s_Q_DayK23G_R7SUH-OMuDc8de9ewWQ-diPDbKhj8FJiDLOizuMRta_XkYo3-XmWCCy-V8IafF4mWej3M57_jrnkcV5NrtfNMJ_3P-GziAcpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microrheological Modeling of Flow-Induced Crystallization</title><source>ACS Publications</source><creator>Coppola, Salvatore ; Grizzuti, Nino ; Maffettone, Pier Luca</creator><creatorcontrib>Coppola, Salvatore ; Grizzuti, Nino ; Maffettone, Pier Luca</creatorcontrib><description>The problem of flow-induced crystallization (FIC) of polymer melts is addressed via a microrheological approach. In particular, the Doi−Edwards model with the so-called independent alignment approximation (DE−IAA) is used to calculate the flow-induced change of free energy. Subsequently, the crystallization induction time, i.e., the nucleation characteristic time, is calculated in isothermal steady shear and uniaxial elongational flows. Asymptotic, analytical expressions for the induction time are also derived in the limit of low and high Deborah number (the product of the deformation rate and the polymer relaxation time). The DE−IAA model is found to give more realistic predictions than those of simpler, dumbbell-like models already proposed in the literature. When compared to existing FIC experimental data in shear flow, good quantitative agreement is found with the polymer relaxation time as the only adjustable parameter of the model.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma010275e</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Crystallization ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization</subject><ispartof>Macromolecules, 2001-07, Vol.34 (14), p.5030-5036</ispartof><rights>Copyright © 2001 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-3acca2e5f30a1e76cc5fa5ba4b1d0b186a34db4c160e733e0dcfabe0ebea8f203</citedby><cites>FETCH-LOGICAL-a324t-3acca2e5f30a1e76cc5fa5ba4b1d0b186a34db4c160e733e0dcfabe0ebea8f203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma010275e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma010275e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1037066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Coppola, Salvatore</creatorcontrib><creatorcontrib>Grizzuti, Nino</creatorcontrib><creatorcontrib>Maffettone, Pier Luca</creatorcontrib><title>Microrheological Modeling of Flow-Induced Crystallization</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>The problem of flow-induced crystallization (FIC) of polymer melts is addressed via a microrheological approach. In particular, the Doi−Edwards model with the so-called independent alignment approximation (DE−IAA) is used to calculate the flow-induced change of free energy. Subsequently, the crystallization induction time, i.e., the nucleation characteristic time, is calculated in isothermal steady shear and uniaxial elongational flows. Asymptotic, analytical expressions for the induction time are also derived in the limit of low and high Deborah number (the product of the deformation rate and the polymer relaxation time). The DE−IAA model is found to give more realistic predictions than those of simpler, dumbbell-like models already proposed in the literature. When compared to existing FIC experimental data in shear flow, good quantitative agreement is found with the polymer relaxation time as the only adjustable parameter of the model.</description><subject>Applied sciences</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNptj7FOwzAQhi0EEqUw8AYZYGAInOM4TkcUUajUioqW2bo4dnFJ48pOBeXpCQqqGJj-4b7_7j5CLincUkjo3QahS8H1ERlQnkDMc8aPyQAgSeNRMhKn5CyENQClPGUDMppZ5Z1_0652K6uwjmau0rVtVpEz0bh2H_GkqXZKV1Hh96HFurZf2FrXnJMTg3XQF785JK_jh2XxFE-fHyfF_TRGlqRtzFApTDQ3DJBqkSnFDfIS05JWUNI8Q5ZWZapoBlowpqFSBksNutSYmwTYkNz0e7s_Q_DayK23G_R7SUH-OMuDc8de9ewWQ-diPDbKhj8FJiDLOizuMRta_XkYo3-XmWCCy-V8IafF4mWej3M57_jrnkcV5NrtfNMJ_3P-GziAcpM</recordid><startdate>20010703</startdate><enddate>20010703</enddate><creator>Coppola, Salvatore</creator><creator>Grizzuti, Nino</creator><creator>Maffettone, Pier Luca</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010703</creationdate><title>Microrheological Modeling of Flow-Induced Crystallization</title><author>Coppola, Salvatore ; Grizzuti, Nino ; Maffettone, Pier Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-3acca2e5f30a1e76cc5fa5ba4b1d0b186a34db4c160e733e0dcfabe0ebea8f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coppola, Salvatore</creatorcontrib><creatorcontrib>Grizzuti, Nino</creatorcontrib><creatorcontrib>Maffettone, Pier Luca</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coppola, Salvatore</au><au>Grizzuti, Nino</au><au>Maffettone, Pier Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microrheological Modeling of Flow-Induced Crystallization</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2001-07-03</date><risdate>2001</risdate><volume>34</volume><issue>14</issue><spage>5030</spage><epage>5036</epage><pages>5030-5036</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>The problem of flow-induced crystallization (FIC) of polymer melts is addressed via a microrheological approach. In particular, the Doi−Edwards model with the so-called independent alignment approximation (DE−IAA) is used to calculate the flow-induced change of free energy. Subsequently, the crystallization induction time, i.e., the nucleation characteristic time, is calculated in isothermal steady shear and uniaxial elongational flows. Asymptotic, analytical expressions for the induction time are also derived in the limit of low and high Deborah number (the product of the deformation rate and the polymer relaxation time). The DE−IAA model is found to give more realistic predictions than those of simpler, dumbbell-like models already proposed in the literature. When compared to existing FIC experimental data in shear flow, good quantitative agreement is found with the polymer relaxation time as the only adjustable parameter of the model.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma010275e</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2001-07, Vol.34 (14), p.5030-5036
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma010275e
source ACS Publications
subjects Applied sciences
Crystallization
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
title Microrheological Modeling of Flow-Induced Crystallization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microrheological%20Modeling%20of%20Flow-Induced%20Crystallization&rft.jtitle=Macromolecules&rft.au=Coppola,%20Salvatore&rft.date=2001-07-03&rft.volume=34&rft.issue=14&rft.spage=5030&rft.epage=5036&rft.pages=5030-5036&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma010275e&rft_dat=%3Cistex_cross%3Eark_67375_TPS_LCSRP8F8_P%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true