Fine Structure and Thermorheological Complexity of the Softening Dispersion in Styrene-Based Copolymers

The segmental and terminal relaxation processes of polystyrene, styrene−acrylonitrile, and α-methylstyrene−acrylonitrile copolymers have been investigated by means of both dynamic-mechanical and dielectric spectroscopy in the linear response region. The temperature dependence of the average relaxati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2001-06, Vol.34 (12), p.3973-3981
Hauptverfasser: Ferri, Dino, Castellani, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3981
container_issue 12
container_start_page 3973
container_title Macromolecules
container_volume 34
creator Ferri, Dino
Castellani, Leonardo
description The segmental and terminal relaxation processes of polystyrene, styrene−acrylonitrile, and α-methylstyrene−acrylonitrile copolymers have been investigated by means of both dynamic-mechanical and dielectric spectroscopy in the linear response region. The temperature dependence of the average relaxation time τ of the two processes follows a Vogel−Tamman−Fulcher (VTF) equation:  τ ∝ exp[B/(T − T ∞)]. Nevertheless, the segmental and terminal relaxations exhibit appreciably different VTF parameters. This vitiates time−temperature superpositioning in the segmental relaxation temperature region, giving rise to complex thermorheological behavior. As first shown by Plazek et al., this finding further confirms the Donth and Ngai models. Peculiar relationships between the VTF parameters of the segmental and terminal relaxation of the same polymer and of the same relaxation process of different polymers are pointed out. These relationships reveal general features of the VTF equation. A comparison between dynamic-mechanical and dielectric segmental relaxation times (τmech and τdiel) highlights a profound difference in the time scales explored by the two techniques. More precisely, segmental motions contributing to the dielectric relaxation are faster than those observed mechanically. The relative magnitude of τmech and τdiel was discussed using the DiMarzio−Bishop model. In addition, the ratio τmech/τdiel is found to be temperature-independent. This suggests a scaling law for the decay function φ(t) of the segmental relaxation leading to the same temperature shift factors for different material properties.
doi_str_mv 10.1021/ma000328c
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma000328c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e66588139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-895a1bce3c5ec30464b6598dfb1d4767cae1ccc71dd00185e8a532d045cab08e3</originalsourceid><addsrcrecordid>eNptkMtOwzAURC0EEqWw4A8iIRYsAnYc57GEQHm1gNTC1nKdm9YlsSM7lZq_xyioK1Z3MWfmagahc4KvCY7ITSMwxjTK5AEaERbhkGWUHaIRxlEc5lGeHqMT5zYYE8JiOkKridIQzDu7ld3WQiB0GSzWYBtj12Bqs1JS1EFhmraGner6wFRBt_YOU3WglV4F98q1YJ0yOlDaJ_UWNIR3wkHpfa2p-8bLp-ioErWDs787Rp-Th0XxFE7fH5-L22koaES7MMuZIEsJVDKQFMdJvExYnpXVkpRxmqRSAJFSpqQsfYWMQSYYjUocMymWOAM6RldDrrTGOQsVb61qhO05wfx3Ib5fyLMXA9sK51tWVmip3N6Q53kcpZ4KB0q5DnZ7VdhvnqQ0ZXzxMefF_PUt_5q98JnnLwdeSMc3Zmu17_vP9x_OWoKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fine Structure and Thermorheological Complexity of the Softening Dispersion in Styrene-Based Copolymers</title><source>American Chemical Society Journals</source><creator>Ferri, Dino ; Castellani, Leonardo</creator><creatorcontrib>Ferri, Dino ; Castellani, Leonardo</creatorcontrib><description>The segmental and terminal relaxation processes of polystyrene, styrene−acrylonitrile, and α-methylstyrene−acrylonitrile copolymers have been investigated by means of both dynamic-mechanical and dielectric spectroscopy in the linear response region. The temperature dependence of the average relaxation time τ of the two processes follows a Vogel−Tamman−Fulcher (VTF) equation:  τ ∝ exp[B/(T − T ∞)]. Nevertheless, the segmental and terminal relaxations exhibit appreciably different VTF parameters. This vitiates time−temperature superpositioning in the segmental relaxation temperature region, giving rise to complex thermorheological behavior. As first shown by Plazek et al., this finding further confirms the Donth and Ngai models. Peculiar relationships between the VTF parameters of the segmental and terminal relaxation of the same polymer and of the same relaxation process of different polymers are pointed out. These relationships reveal general features of the VTF equation. A comparison between dynamic-mechanical and dielectric segmental relaxation times (τmech and τdiel) highlights a profound difference in the time scales explored by the two techniques. More precisely, segmental motions contributing to the dielectric relaxation are faster than those observed mechanically. The relative magnitude of τmech and τdiel was discussed using the DiMarzio−Bishop model. In addition, the ratio τmech/τdiel is found to be temperature-independent. This suggests a scaling law for the decay function φ(t) of the segmental relaxation leading to the same temperature shift factors for different material properties.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma000328c</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Rheology and viscoelasticity</subject><ispartof>Macromolecules, 2001-06, Vol.34 (12), p.3973-3981</ispartof><rights>Copyright © 2001 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-895a1bce3c5ec30464b6598dfb1d4767cae1ccc71dd00185e8a532d045cab08e3</citedby><cites>FETCH-LOGICAL-a323t-895a1bce3c5ec30464b6598dfb1d4767cae1ccc71dd00185e8a532d045cab08e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ma000328c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ma000328c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=999427$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferri, Dino</creatorcontrib><creatorcontrib>Castellani, Leonardo</creatorcontrib><title>Fine Structure and Thermorheological Complexity of the Softening Dispersion in Styrene-Based Copolymers</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>The segmental and terminal relaxation processes of polystyrene, styrene−acrylonitrile, and α-methylstyrene−acrylonitrile copolymers have been investigated by means of both dynamic-mechanical and dielectric spectroscopy in the linear response region. The temperature dependence of the average relaxation time τ of the two processes follows a Vogel−Tamman−Fulcher (VTF) equation:  τ ∝ exp[B/(T − T ∞)]. Nevertheless, the segmental and terminal relaxations exhibit appreciably different VTF parameters. This vitiates time−temperature superpositioning in the segmental relaxation temperature region, giving rise to complex thermorheological behavior. As first shown by Plazek et al., this finding further confirms the Donth and Ngai models. Peculiar relationships between the VTF parameters of the segmental and terminal relaxation of the same polymer and of the same relaxation process of different polymers are pointed out. These relationships reveal general features of the VTF equation. A comparison between dynamic-mechanical and dielectric segmental relaxation times (τmech and τdiel) highlights a profound difference in the time scales explored by the two techniques. More precisely, segmental motions contributing to the dielectric relaxation are faster than those observed mechanically. The relative magnitude of τmech and τdiel was discussed using the DiMarzio−Bishop model. In addition, the ratio τmech/τdiel is found to be temperature-independent. This suggests a scaling law for the decay function φ(t) of the segmental relaxation leading to the same temperature shift factors for different material properties.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Rheology and viscoelasticity</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAURC0EEqWw4A8iIRYsAnYc57GEQHm1gNTC1nKdm9YlsSM7lZq_xyioK1Z3MWfmagahc4KvCY7ITSMwxjTK5AEaERbhkGWUHaIRxlEc5lGeHqMT5zYYE8JiOkKridIQzDu7ld3WQiB0GSzWYBtj12Bqs1JS1EFhmraGner6wFRBt_YOU3WglV4F98q1YJ0yOlDaJ_UWNIR3wkHpfa2p-8bLp-ioErWDs787Rp-Th0XxFE7fH5-L22koaES7MMuZIEsJVDKQFMdJvExYnpXVkpRxmqRSAJFSpqQsfYWMQSYYjUocMymWOAM6RldDrrTGOQsVb61qhO05wfx3Ib5fyLMXA9sK51tWVmip3N6Q53kcpZ4KB0q5DnZ7VdhvnqQ0ZXzxMefF_PUt_5q98JnnLwdeSMc3Zmu17_vP9x_OWoKY</recordid><startdate>20010605</startdate><enddate>20010605</enddate><creator>Ferri, Dino</creator><creator>Castellani, Leonardo</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010605</creationdate><title>Fine Structure and Thermorheological Complexity of the Softening Dispersion in Styrene-Based Copolymers</title><author>Ferri, Dino ; Castellani, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-895a1bce3c5ec30464b6598dfb1d4767cae1ccc71dd00185e8a532d045cab08e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Rheology and viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferri, Dino</creatorcontrib><creatorcontrib>Castellani, Leonardo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferri, Dino</au><au>Castellani, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine Structure and Thermorheological Complexity of the Softening Dispersion in Styrene-Based Copolymers</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2001-06-05</date><risdate>2001</risdate><volume>34</volume><issue>12</issue><spage>3973</spage><epage>3981</epage><pages>3973-3981</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>The segmental and terminal relaxation processes of polystyrene, styrene−acrylonitrile, and α-methylstyrene−acrylonitrile copolymers have been investigated by means of both dynamic-mechanical and dielectric spectroscopy in the linear response region. The temperature dependence of the average relaxation time τ of the two processes follows a Vogel−Tamman−Fulcher (VTF) equation:  τ ∝ exp[B/(T − T ∞)]. Nevertheless, the segmental and terminal relaxations exhibit appreciably different VTF parameters. This vitiates time−temperature superpositioning in the segmental relaxation temperature region, giving rise to complex thermorheological behavior. As first shown by Plazek et al., this finding further confirms the Donth and Ngai models. Peculiar relationships between the VTF parameters of the segmental and terminal relaxation of the same polymer and of the same relaxation process of different polymers are pointed out. These relationships reveal general features of the VTF equation. A comparison between dynamic-mechanical and dielectric segmental relaxation times (τmech and τdiel) highlights a profound difference in the time scales explored by the two techniques. More precisely, segmental motions contributing to the dielectric relaxation are faster than those observed mechanically. The relative magnitude of τmech and τdiel was discussed using the DiMarzio−Bishop model. In addition, the ratio τmech/τdiel is found to be temperature-independent. This suggests a scaling law for the decay function φ(t) of the segmental relaxation leading to the same temperature shift factors for different material properties.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma000328c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2001-06, Vol.34 (12), p.3973-3981
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma000328c
source American Chemical Society Journals
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
Rheology and viscoelasticity
title Fine Structure and Thermorheological Complexity of the Softening Dispersion in Styrene-Based Copolymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%20Structure%20and%20Thermorheological%20Complexity%20of%20the%20Softening%20Dispersion%20in%20Styrene-Based%20Copolymers&rft.jtitle=Macromolecules&rft.au=Ferri,%20Dino&rft.date=2001-06-05&rft.volume=34&rft.issue=12&rft.spage=3973&rft.epage=3981&rft.pages=3973-3981&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma000328c&rft_dat=%3Cacs_cross%3Ee66588139%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true