Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo

We present a realistic model of carbon pore morphologies based on molecular simulation. Reverse Monte Carlo (RMC) techniques are used to generate model carbon structures composed of rigid carbon basal plates. Arrangement of the carbon plates is driven by a systematic refinement of simulated carbon−c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2000-06, Vol.16 (13), p.5761-5773
Hauptverfasser: Thomson, Kendall T, Gubbins, Keith E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5773
container_issue 13
container_start_page 5761
container_title Langmuir
container_volume 16
creator Thomson, Kendall T
Gubbins, Keith E
description We present a realistic model of carbon pore morphologies based on molecular simulation. Reverse Monte Carlo (RMC) techniques are used to generate model carbon structures composed of rigid carbon basal plates. Arrangement of the carbon plates is driven by a systematic refinement of simulated carbon−carbon radial distribution functions to match experiment. The RMC procedure was first tested by comparing a model output structure to a hypothetical input structure generated through molecular dynamics techniques. Structural characteristics of the RMC model such as porosity, surface area, pore-size distribution, and surface-averaged energy distributions were in close agreement with those for the input structure, thus validating the RMC method. We also studied the structural characteristics of a model output generated from a real, activated mesocarbon microbead (a-MCMB). The porosity, surface area, and simulated N2 isotherm are compared with experiment. Nitrogen adsorption isotherms for our model carbon structures, generated by grand canonical MC techniques, show a pore morphology that is generally non-slit-like and highly connected with evidence of localized capillary condensation occurring in regions with pores of around 14.5 Å and higher.
doi_str_mv 10.1021/la991581c
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la991581c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_C5JKPBS9_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-2613f3ac3451ee1737199f1cdbc4193c7ace86ed0be36eba7c976b869691cd633</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgUQpDLyBFwaGgB0ndjxCxD0VFS2z5TgnJSXElZ0g8va4KurEdIbz6T8XhM4puaIkptetlpKmGTUHaELTmERpFotDNCEiYZFIODtGJ96vCSGSJXKCipmtoG26FV70bjD94HSLZ9ZtPmxrVyO2NZ41xtmNdXbwONeutJ3H5Yjf4Buch4C7HraN1p6io1q3Hs7-6hS9398t88eoeH14ym-KSDMp-yjmlNVMG5akFIAKJqiUNTVVaRIqmRHaQMahIiUwDqUWRgpeZlxyGRBnbIoud7lhMe8d1Grjmi_tRkWJ2r5B7d8QbLSzje_hZw-1-1Q8TE7Vcr5Qefr8Mr9dSCWCv9h5bbxa28F14ZJ_cn8Bz_1rqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo</title><source>ACS Publications</source><creator>Thomson, Kendall T ; Gubbins, Keith E</creator><creatorcontrib>Thomson, Kendall T ; Gubbins, Keith E</creatorcontrib><description>We present a realistic model of carbon pore morphologies based on molecular simulation. Reverse Monte Carlo (RMC) techniques are used to generate model carbon structures composed of rigid carbon basal plates. Arrangement of the carbon plates is driven by a systematic refinement of simulated carbon−carbon radial distribution functions to match experiment. The RMC procedure was first tested by comparing a model output structure to a hypothetical input structure generated through molecular dynamics techniques. Structural characteristics of the RMC model such as porosity, surface area, pore-size distribution, and surface-averaged energy distributions were in close agreement with those for the input structure, thus validating the RMC method. We also studied the structural characteristics of a model output generated from a real, activated mesocarbon microbead (a-MCMB). The porosity, surface area, and simulated N2 isotherm are compared with experiment. Nitrogen adsorption isotherms for our model carbon structures, generated by grand canonical MC techniques, show a pore morphology that is generally non-slit-like and highly connected with evidence of localized capillary condensation occurring in regions with pores of around 14.5 Å and higher.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la991581c</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2000-06, Vol.16 (13), p.5761-5773</ispartof><rights>Copyright © 2000 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-2613f3ac3451ee1737199f1cdbc4193c7ace86ed0be36eba7c976b869691cd633</citedby><cites>FETCH-LOGICAL-a399t-2613f3ac3451ee1737199f1cdbc4193c7ace86ed0be36eba7c976b869691cd633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la991581c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la991581c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Thomson, Kendall T</creatorcontrib><creatorcontrib>Gubbins, Keith E</creatorcontrib><title>Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We present a realistic model of carbon pore morphologies based on molecular simulation. Reverse Monte Carlo (RMC) techniques are used to generate model carbon structures composed of rigid carbon basal plates. Arrangement of the carbon plates is driven by a systematic refinement of simulated carbon−carbon radial distribution functions to match experiment. The RMC procedure was first tested by comparing a model output structure to a hypothetical input structure generated through molecular dynamics techniques. Structural characteristics of the RMC model such as porosity, surface area, pore-size distribution, and surface-averaged energy distributions were in close agreement with those for the input structure, thus validating the RMC method. We also studied the structural characteristics of a model output generated from a real, activated mesocarbon microbead (a-MCMB). The porosity, surface area, and simulated N2 isotherm are compared with experiment. Nitrogen adsorption isotherms for our model carbon structures, generated by grand canonical MC techniques, show a pore morphology that is generally non-slit-like and highly connected with evidence of localized capillary condensation occurring in regions with pores of around 14.5 Å and higher.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpt0LtOwzAUBmALgUQpDLyBFwaGgB0ndjxCxD0VFS2z5TgnJSXElZ0g8va4KurEdIbz6T8XhM4puaIkptetlpKmGTUHaELTmERpFotDNCEiYZFIODtGJ96vCSGSJXKCipmtoG26FV70bjD94HSLZ9ZtPmxrVyO2NZ41xtmNdXbwONeutJ3H5Yjf4Buch4C7HraN1p6io1q3Hs7-6hS9398t88eoeH14ym-KSDMp-yjmlNVMG5akFIAKJqiUNTVVaRIqmRHaQMahIiUwDqUWRgpeZlxyGRBnbIoud7lhMe8d1Grjmi_tRkWJ2r5B7d8QbLSzje_hZw-1-1Q8TE7Vcr5Qefr8Mr9dSCWCv9h5bbxa28F14ZJ_cn8Bz_1rqw</recordid><startdate>20000627</startdate><enddate>20000627</enddate><creator>Thomson, Kendall T</creator><creator>Gubbins, Keith E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000627</creationdate><title>Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo</title><author>Thomson, Kendall T ; Gubbins, Keith E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-2613f3ac3451ee1737199f1cdbc4193c7ace86ed0be36eba7c976b869691cd633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomson, Kendall T</creatorcontrib><creatorcontrib>Gubbins, Keith E</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomson, Kendall T</au><au>Gubbins, Keith E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2000-06-27</date><risdate>2000</risdate><volume>16</volume><issue>13</issue><spage>5761</spage><epage>5773</epage><pages>5761-5773</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We present a realistic model of carbon pore morphologies based on molecular simulation. Reverse Monte Carlo (RMC) techniques are used to generate model carbon structures composed of rigid carbon basal plates. Arrangement of the carbon plates is driven by a systematic refinement of simulated carbon−carbon radial distribution functions to match experiment. The RMC procedure was first tested by comparing a model output structure to a hypothetical input structure generated through molecular dynamics techniques. Structural characteristics of the RMC model such as porosity, surface area, pore-size distribution, and surface-averaged energy distributions were in close agreement with those for the input structure, thus validating the RMC method. We also studied the structural characteristics of a model output generated from a real, activated mesocarbon microbead (a-MCMB). The porosity, surface area, and simulated N2 isotherm are compared with experiment. Nitrogen adsorption isotherms for our model carbon structures, generated by grand canonical MC techniques, show a pore morphology that is generally non-slit-like and highly connected with evidence of localized capillary condensation occurring in regions with pores of around 14.5 Å and higher.</abstract><pub>American Chemical Society</pub><doi>10.1021/la991581c</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2000-06, Vol.16 (13), p.5761-5773
issn 0743-7463
1520-5827
language eng
recordid cdi_crossref_primary_10_1021_la991581c
source ACS Publications
title Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Structural%20Morphology%20of%20Microporous%20Carbons%20by%20Reverse%20Monte%20Carlo&rft.jtitle=Langmuir&rft.au=Thomson,%20Kendall%20T&rft.date=2000-06-27&rft.volume=16&rft.issue=13&rft.spage=5761&rft.epage=5773&rft.pages=5761-5773&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la991581c&rft_dat=%3Cistex_cross%3Eark_67375_TPS_C5JKPBS9_7%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true