Dynamic Penetration of an Insoluble Monolayer by a Soluble Surfactant:  Theory and Experiment

Surfactants or surface active proteins adsorbing onto aqueous−gas interfaces can require many minutes to hours to attain equilibrium, depending upon the size, bulk concentration, and chemical structure of the adsorbing species. In contrast, soluble surface active molecules adsorbing into an insolubl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 1997-03, Vol.13 (6), p.1729-1736
Hauptverfasser: Sundaram, Sekhar, Stebe, Kathleen J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1736
container_issue 6
container_start_page 1729
container_title Langmuir
container_volume 13
creator Sundaram, Sekhar
Stebe, Kathleen J
description Surfactants or surface active proteins adsorbing onto aqueous−gas interfaces can require many minutes to hours to attain equilibrium, depending upon the size, bulk concentration, and chemical structure of the adsorbing species. In contrast, soluble surface active molecules adsorbing into an insoluble monolayer equilibrate on a time scale that is more rapid. Here, the time dependent behavior of the adsorption of a soluble surface active molecule into an insoluble monolayer is addressed using a diffusion-controlled adsorption model with a Langmuir or Frumkin adsorption isotherm. In the Langmuir framework, the presence of an insoluble monolayer occupying the fraction x 1 of the interface reduces the amount of soluble surfactant adsorbed at equilibrium by the factor (1 − x 1). Because less surfactant must be delivered to the interface, the equilibration time scale for the adsorption process is reduced by the factor (1 − x 1)2 as compared to adsorption onto a clean interface. In a Frumkin framework, the role of cohesive or repulsive interactions in altering the equilibrium amount delivered and the equilibration time scale is probed. The trends predicted by this framework are shown to be in qualitative agreement with dynamic surface pressure data for the penetration of DPPC (dipalmitoylphosphatidylcholine) monolayers by the soluble protein lysozyme taken on a multicompartment circular penetration trough. Discrepancies between predicted and observed time scales are suggestive either of a kinetic barrier to adsorption or of intermolecular interactions between the adsorbing molecules.
doi_str_mv 10.1021/la9609938
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la9609938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_VNR7RZLM_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-cd71ee4d1f819d1f7b941a5d0ad8bf334731a333d07087ff7b781370d259b7133</originalsourceid><addsrcrecordid>eNptkL9OwzAQxi0EEqUw8AYeYGAI2HESJ2yoFKjUQtUWBhbrktgiJbUrO5WajZXX5EkwStWJ5U6673f_PoTOKbmmJKQ3NWQJyTKWHqAejUMSxGnID1GP8IgFPErYMTpxbkkIyViU9ZC4bzWsqgJPpZaNhaYyGhuFQeORdqbe5LXEE6NNDa20OG8x4PmuPN9YBUUDurn9-frGiw9prNd1iYfbtbTVSurmFB0pqJ082-U-en0YLgZPwfjlcTS4GwfAwqgJipJTKaOSqpRmPvI8iyjEJYEyzRVjEWcUGGMl4STlyus8pYyTMoyznFPG-uiqm1tY45yVSqz9AWBbQYn4c0bsnfHsRceuwRVQKwu6qNy-IUxCbw3xWNBhlWvkdi-D_RQJZzwWi-lcvD3P-Ox9PBEDz192PBROLM3Gav_wP-t_AcfxfsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Penetration of an Insoluble Monolayer by a Soluble Surfactant:  Theory and Experiment</title><source>American Chemical Society Journals</source><creator>Sundaram, Sekhar ; Stebe, Kathleen J</creator><creatorcontrib>Sundaram, Sekhar ; Stebe, Kathleen J</creatorcontrib><description>Surfactants or surface active proteins adsorbing onto aqueous−gas interfaces can require many minutes to hours to attain equilibrium, depending upon the size, bulk concentration, and chemical structure of the adsorbing species. In contrast, soluble surface active molecules adsorbing into an insoluble monolayer equilibrate on a time scale that is more rapid. Here, the time dependent behavior of the adsorption of a soluble surface active molecule into an insoluble monolayer is addressed using a diffusion-controlled adsorption model with a Langmuir or Frumkin adsorption isotherm. In the Langmuir framework, the presence of an insoluble monolayer occupying the fraction x 1 of the interface reduces the amount of soluble surfactant adsorbed at equilibrium by the factor (1 − x 1). Because less surfactant must be delivered to the interface, the equilibration time scale for the adsorption process is reduced by the factor (1 − x 1)2 as compared to adsorption onto a clean interface. In a Frumkin framework, the role of cohesive or repulsive interactions in altering the equilibrium amount delivered and the equilibration time scale is probed. The trends predicted by this framework are shown to be in qualitative agreement with dynamic surface pressure data for the penetration of DPPC (dipalmitoylphosphatidylcholine) monolayers by the soluble protein lysozyme taken on a multicompartment circular penetration trough. Discrepancies between predicted and observed time scales are suggestive either of a kinetic barrier to adsorption or of intermolecular interactions between the adsorbing molecules.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la9609938</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; Gas-liquid interface and liquid-liquid interface ; General and physical chemistry ; Surface physical chemistry</subject><ispartof>Langmuir, 1997-03, Vol.13 (6), p.1729-1736</ispartof><rights>Copyright © 1997 American Chemical Society</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-cd71ee4d1f819d1f7b941a5d0ad8bf334731a333d07087ff7b781370d259b7133</citedby><cites>FETCH-LOGICAL-a324t-cd71ee4d1f819d1f7b941a5d0ad8bf334731a333d07087ff7b781370d259b7133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la9609938$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la9609938$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2623490$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sundaram, Sekhar</creatorcontrib><creatorcontrib>Stebe, Kathleen J</creatorcontrib><title>Dynamic Penetration of an Insoluble Monolayer by a Soluble Surfactant:  Theory and Experiment</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Surfactants or surface active proteins adsorbing onto aqueous−gas interfaces can require many minutes to hours to attain equilibrium, depending upon the size, bulk concentration, and chemical structure of the adsorbing species. In contrast, soluble surface active molecules adsorbing into an insoluble monolayer equilibrate on a time scale that is more rapid. Here, the time dependent behavior of the adsorption of a soluble surface active molecule into an insoluble monolayer is addressed using a diffusion-controlled adsorption model with a Langmuir or Frumkin adsorption isotherm. In the Langmuir framework, the presence of an insoluble monolayer occupying the fraction x 1 of the interface reduces the amount of soluble surfactant adsorbed at equilibrium by the factor (1 − x 1). Because less surfactant must be delivered to the interface, the equilibration time scale for the adsorption process is reduced by the factor (1 − x 1)2 as compared to adsorption onto a clean interface. In a Frumkin framework, the role of cohesive or repulsive interactions in altering the equilibrium amount delivered and the equilibration time scale is probed. The trends predicted by this framework are shown to be in qualitative agreement with dynamic surface pressure data for the penetration of DPPC (dipalmitoylphosphatidylcholine) monolayers by the soluble protein lysozyme taken on a multicompartment circular penetration trough. Discrepancies between predicted and observed time scales are suggestive either of a kinetic barrier to adsorption or of intermolecular interactions between the adsorbing molecules.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Gas-liquid interface and liquid-liquid interface</subject><subject>General and physical chemistry</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNptkL9OwzAQxi0EEqUw8AYeYGAI2HESJ2yoFKjUQtUWBhbrktgiJbUrO5WajZXX5EkwStWJ5U6673f_PoTOKbmmJKQ3NWQJyTKWHqAejUMSxGnID1GP8IgFPErYMTpxbkkIyViU9ZC4bzWsqgJPpZaNhaYyGhuFQeORdqbe5LXEE6NNDa20OG8x4PmuPN9YBUUDurn9-frGiw9prNd1iYfbtbTVSurmFB0pqJ082-U-en0YLgZPwfjlcTS4GwfAwqgJipJTKaOSqpRmPvI8iyjEJYEyzRVjEWcUGGMl4STlyus8pYyTMoyznFPG-uiqm1tY45yVSqz9AWBbQYn4c0bsnfHsRceuwRVQKwu6qNy-IUxCbw3xWNBhlWvkdi-D_RQJZzwWi-lcvD3P-Ox9PBEDz192PBROLM3Gav_wP-t_AcfxfsA</recordid><startdate>19970319</startdate><enddate>19970319</enddate><creator>Sundaram, Sekhar</creator><creator>Stebe, Kathleen J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970319</creationdate><title>Dynamic Penetration of an Insoluble Monolayer by a Soluble Surfactant:  Theory and Experiment</title><author>Sundaram, Sekhar ; Stebe, Kathleen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-cd71ee4d1f819d1f7b941a5d0ad8bf334731a333d07087ff7b781370d259b7133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Gas-liquid interface and liquid-liquid interface</topic><topic>General and physical chemistry</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundaram, Sekhar</creatorcontrib><creatorcontrib>Stebe, Kathleen J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundaram, Sekhar</au><au>Stebe, Kathleen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Penetration of an Insoluble Monolayer by a Soluble Surfactant:  Theory and Experiment</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>1997-03-19</date><risdate>1997</risdate><volume>13</volume><issue>6</issue><spage>1729</spage><epage>1736</epage><pages>1729-1736</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Surfactants or surface active proteins adsorbing onto aqueous−gas interfaces can require many minutes to hours to attain equilibrium, depending upon the size, bulk concentration, and chemical structure of the adsorbing species. In contrast, soluble surface active molecules adsorbing into an insoluble monolayer equilibrate on a time scale that is more rapid. Here, the time dependent behavior of the adsorption of a soluble surface active molecule into an insoluble monolayer is addressed using a diffusion-controlled adsorption model with a Langmuir or Frumkin adsorption isotherm. In the Langmuir framework, the presence of an insoluble monolayer occupying the fraction x 1 of the interface reduces the amount of soluble surfactant adsorbed at equilibrium by the factor (1 − x 1). Because less surfactant must be delivered to the interface, the equilibration time scale for the adsorption process is reduced by the factor (1 − x 1)2 as compared to adsorption onto a clean interface. In a Frumkin framework, the role of cohesive or repulsive interactions in altering the equilibrium amount delivered and the equilibration time scale is probed. The trends predicted by this framework are shown to be in qualitative agreement with dynamic surface pressure data for the penetration of DPPC (dipalmitoylphosphatidylcholine) monolayers by the soluble protein lysozyme taken on a multicompartment circular penetration trough. Discrepancies between predicted and observed time scales are suggestive either of a kinetic barrier to adsorption or of intermolecular interactions between the adsorbing molecules.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/la9609938</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 1997-03, Vol.13 (6), p.1729-1736
issn 0743-7463
1520-5827
language eng
recordid cdi_crossref_primary_10_1021_la9609938
source American Chemical Society Journals
subjects Chemistry
Exact sciences and technology
Gas-liquid interface and liquid-liquid interface
General and physical chemistry
Surface physical chemistry
title Dynamic Penetration of an Insoluble Monolayer by a Soluble Surfactant:  Theory and Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Penetration%20of%20an%20Insoluble%20Monolayer%20by%20a%20Soluble%20Surfactant:%E2%80%89%20Theory%20and%20Experiment&rft.jtitle=Langmuir&rft.au=Sundaram,%20Sekhar&rft.date=1997-03-19&rft.volume=13&rft.issue=6&rft.spage=1729&rft.epage=1736&rft.pages=1729-1736&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la9609938&rft_dat=%3Cistex_cross%3Eark_67375_TPS_VNR7RZLM_C%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true