Universal Method for Creating Optically Active Nanostructures on Layered Materials

The ability to form patterned surface nanostructures has revolutionized the miniaturization of electronics and led to the discovery of emergent behaviors unseen in macroscopic systems. However, the creation of such nanostructures typically requires multiple processing steps, a high level of technica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:LANGMUIR 2014-05, Vol.30 (20), p.5939-5945
Hauptverfasser: Kidd, Timothy E, O’Shea, Aaron, Beck, Benjamin, He, Rui, Delaney, Conor, Shand, Paul M, Strauss, Laura H, Stollenwerk, Andrew, Hurley, Noah, Spurgeon, Kyle, Gu, Genda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5945
container_issue 20
container_start_page 5939
container_title LANGMUIR
container_volume 30
creator Kidd, Timothy E
O’Shea, Aaron
Beck, Benjamin
He, Rui
Delaney, Conor
Shand, Paul M
Strauss, Laura H
Stollenwerk, Andrew
Hurley, Noah
Spurgeon, Kyle
Gu, Genda
description The ability to form patterned surface nanostructures has revolutionized the miniaturization of electronics and led to the discovery of emergent behaviors unseen in macroscopic systems. However, the creation of such nanostructures typically requires multiple processing steps, a high level of technical expertise, and highly sophisticated equipment. In this work, we have discovered a simple method to create nanostructures with control size and positioning in a single processing step using a standard scanning electron microscope. The technique can be applied to a wide range of systems and was successful in every layered material tested. Patterned nanostructures were formed on graphite, topological insulators, novel superconductors, and layered transition metal dichalcogenides. The nanostructures were formed via the incorporation of carbon nanoparticles into the samples in a novel form of intercalation. It appears that the electron beam interacts with residual organic molecules available on the sample surface, making it possible for them to intercalate between the layers in their crystal structure and break down into carbon. These carbon nanoparticles have strong broad-wavelength interactions in the visible light range, making these nanostructures easily detectable in an optical microscope and of interest for a range of nanoscale electro-optical devices.
doi_str_mv 10.1021/la501013x
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la501013x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b511428518</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-96a66ee4769efa776d8190b37d8722d62bcb10f8e8507685d7e0b384070960eb3</originalsourceid><addsrcrecordid>eNpt0M9LwzAUB_AgipvTg_-ABMGDh-pL0ibpcQx_weZA3Lmk6avr6NqRpOL-eyvVnTy9w_vw5b0vIZcM7hhwdl-bBBgw8XVExizhECWaq2MyBhWLSMVSjMiZ9xsASEWcnpIRj1UqWAxj8rZqqk903tR0gWHdFrRsHZ05NKFqPuhyFypr6npPpzb0kL6apvXBdTZ0Dj1tGzo3e3RY0IUJ6CpT-3NyUvYDL37nhKweH95nz9F8-fQym84jI2IeolQaKRFjJVMsjVKy0CyFXKhCK84LyXObMyg16gSU1EmhsN_qGBSkEjAXE3I95PYHVZm3VUC7tm3ToA0ZY0pzJnp0OyDrWu8dltnOVVvj9hmD7Ke87FBeb68Gu-vyLRYH-ddWD24GYKzPNm3nmv6_f4K-AbQUdSM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universal Method for Creating Optically Active Nanostructures on Layered Materials</title><source>American Chemical Society Journals</source><creator>Kidd, Timothy E ; O’Shea, Aaron ; Beck, Benjamin ; He, Rui ; Delaney, Conor ; Shand, Paul M ; Strauss, Laura H ; Stollenwerk, Andrew ; Hurley, Noah ; Spurgeon, Kyle ; Gu, Genda</creator><creatorcontrib>Kidd, Timothy E ; O’Shea, Aaron ; Beck, Benjamin ; He, Rui ; Delaney, Conor ; Shand, Paul M ; Strauss, Laura H ; Stollenwerk, Andrew ; Hurley, Noah ; Spurgeon, Kyle ; Gu, Genda ; Brookhaven National Laboratory (BNL)</creatorcontrib><description>The ability to form patterned surface nanostructures has revolutionized the miniaturization of electronics and led to the discovery of emergent behaviors unseen in macroscopic systems. However, the creation of such nanostructures typically requires multiple processing steps, a high level of technical expertise, and highly sophisticated equipment. In this work, we have discovered a simple method to create nanostructures with control size and positioning in a single processing step using a standard scanning electron microscope. The technique can be applied to a wide range of systems and was successful in every layered material tested. Patterned nanostructures were formed on graphite, topological insulators, novel superconductors, and layered transition metal dichalcogenides. The nanostructures were formed via the incorporation of carbon nanoparticles into the samples in a novel form of intercalation. It appears that the electron beam interacts with residual organic molecules available on the sample surface, making it possible for them to intercalate between the layers in their crystal structure and break down into carbon. These carbon nanoparticles have strong broad-wavelength interactions in the visible light range, making these nanostructures easily detectable in an optical microscope and of interest for a range of nanoscale electro-optical devices.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la501013x</identifier><identifier>PMID: 24793140</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><ispartof>LANGMUIR, 2014-05, Vol.30 (20), p.5939-5945</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-96a66ee4769efa776d8190b37d8722d62bcb10f8e8507685d7e0b384070960eb3</citedby><cites>FETCH-LOGICAL-a342t-96a66ee4769efa776d8190b37d8722d62bcb10f8e8507685d7e0b384070960eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la501013x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la501013x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24793140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1178213$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kidd, Timothy E</creatorcontrib><creatorcontrib>O’Shea, Aaron</creatorcontrib><creatorcontrib>Beck, Benjamin</creatorcontrib><creatorcontrib>He, Rui</creatorcontrib><creatorcontrib>Delaney, Conor</creatorcontrib><creatorcontrib>Shand, Paul M</creatorcontrib><creatorcontrib>Strauss, Laura H</creatorcontrib><creatorcontrib>Stollenwerk, Andrew</creatorcontrib><creatorcontrib>Hurley, Noah</creatorcontrib><creatorcontrib>Spurgeon, Kyle</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL)</creatorcontrib><title>Universal Method for Creating Optically Active Nanostructures on Layered Materials</title><title>LANGMUIR</title><addtitle>Langmuir</addtitle><description>The ability to form patterned surface nanostructures has revolutionized the miniaturization of electronics and led to the discovery of emergent behaviors unseen in macroscopic systems. However, the creation of such nanostructures typically requires multiple processing steps, a high level of technical expertise, and highly sophisticated equipment. In this work, we have discovered a simple method to create nanostructures with control size and positioning in a single processing step using a standard scanning electron microscope. The technique can be applied to a wide range of systems and was successful in every layered material tested. Patterned nanostructures were formed on graphite, topological insulators, novel superconductors, and layered transition metal dichalcogenides. The nanostructures were formed via the incorporation of carbon nanoparticles into the samples in a novel form of intercalation. It appears that the electron beam interacts with residual organic molecules available on the sample surface, making it possible for them to intercalate between the layers in their crystal structure and break down into carbon. These carbon nanoparticles have strong broad-wavelength interactions in the visible light range, making these nanostructures easily detectable in an optical microscope and of interest for a range of nanoscale electro-optical devices.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0M9LwzAUB_AgipvTg_-ABMGDh-pL0ibpcQx_weZA3Lmk6avr6NqRpOL-eyvVnTy9w_vw5b0vIZcM7hhwdl-bBBgw8XVExizhECWaq2MyBhWLSMVSjMiZ9xsASEWcnpIRj1UqWAxj8rZqqk903tR0gWHdFrRsHZ05NKFqPuhyFypr6npPpzb0kL6apvXBdTZ0Dj1tGzo3e3RY0IUJ6CpT-3NyUvYDL37nhKweH95nz9F8-fQym84jI2IeolQaKRFjJVMsjVKy0CyFXKhCK84LyXObMyg16gSU1EmhsN_qGBSkEjAXE3I95PYHVZm3VUC7tm3ToA0ZY0pzJnp0OyDrWu8dltnOVVvj9hmD7Ke87FBeb68Gu-vyLRYH-ddWD24GYKzPNm3nmv6_f4K-AbQUdSM</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Kidd, Timothy E</creator><creator>O’Shea, Aaron</creator><creator>Beck, Benjamin</creator><creator>He, Rui</creator><creator>Delaney, Conor</creator><creator>Shand, Paul M</creator><creator>Strauss, Laura H</creator><creator>Stollenwerk, Andrew</creator><creator>Hurley, Noah</creator><creator>Spurgeon, Kyle</creator><creator>Gu, Genda</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20140527</creationdate><title>Universal Method for Creating Optically Active Nanostructures on Layered Materials</title><author>Kidd, Timothy E ; O’Shea, Aaron ; Beck, Benjamin ; He, Rui ; Delaney, Conor ; Shand, Paul M ; Strauss, Laura H ; Stollenwerk, Andrew ; Hurley, Noah ; Spurgeon, Kyle ; Gu, Genda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-96a66ee4769efa776d8190b37d8722d62bcb10f8e8507685d7e0b384070960eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kidd, Timothy E</creatorcontrib><creatorcontrib>O’Shea, Aaron</creatorcontrib><creatorcontrib>Beck, Benjamin</creatorcontrib><creatorcontrib>He, Rui</creatorcontrib><creatorcontrib>Delaney, Conor</creatorcontrib><creatorcontrib>Shand, Paul M</creatorcontrib><creatorcontrib>Strauss, Laura H</creatorcontrib><creatorcontrib>Stollenwerk, Andrew</creatorcontrib><creatorcontrib>Hurley, Noah</creatorcontrib><creatorcontrib>Spurgeon, Kyle</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>LANGMUIR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kidd, Timothy E</au><au>O’Shea, Aaron</au><au>Beck, Benjamin</au><au>He, Rui</au><au>Delaney, Conor</au><au>Shand, Paul M</au><au>Strauss, Laura H</au><au>Stollenwerk, Andrew</au><au>Hurley, Noah</au><au>Spurgeon, Kyle</au><au>Gu, Genda</au><aucorp>Brookhaven National Laboratory (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Method for Creating Optically Active Nanostructures on Layered Materials</atitle><jtitle>LANGMUIR</jtitle><addtitle>Langmuir</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>30</volume><issue>20</issue><spage>5939</spage><epage>5945</epage><pages>5939-5945</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The ability to form patterned surface nanostructures has revolutionized the miniaturization of electronics and led to the discovery of emergent behaviors unseen in macroscopic systems. However, the creation of such nanostructures typically requires multiple processing steps, a high level of technical expertise, and highly sophisticated equipment. In this work, we have discovered a simple method to create nanostructures with control size and positioning in a single processing step using a standard scanning electron microscope. The technique can be applied to a wide range of systems and was successful in every layered material tested. Patterned nanostructures were formed on graphite, topological insulators, novel superconductors, and layered transition metal dichalcogenides. The nanostructures were formed via the incorporation of carbon nanoparticles into the samples in a novel form of intercalation. It appears that the electron beam interacts with residual organic molecules available on the sample surface, making it possible for them to intercalate between the layers in their crystal structure and break down into carbon. These carbon nanoparticles have strong broad-wavelength interactions in the visible light range, making these nanostructures easily detectable in an optical microscope and of interest for a range of nanoscale electro-optical devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24793140</pmid><doi>10.1021/la501013x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof LANGMUIR, 2014-05, Vol.30 (20), p.5939-5945
issn 0743-7463
1520-5827
language eng
recordid cdi_crossref_primary_10_1021_la501013x
source American Chemical Society Journals
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
title Universal Method for Creating Optically Active Nanostructures on Layered Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Method%20for%20Creating%20Optically%20Active%20Nanostructures%20on%20Layered%20Materials&rft.jtitle=LANGMUIR&rft.au=Kidd,%20Timothy%20E&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)&rft.date=2014-05-27&rft.volume=30&rft.issue=20&rft.spage=5939&rft.epage=5945&rft.pages=5939-5945&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la501013x&rft_dat=%3Cacs_osti_%3Eb511428518%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24793140&rfr_iscdi=true