Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties

Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-07, Vol.28 (27), p.10246-10255
Hauptverfasser: Zhu, Jiahua, Gu, Hongbo, Luo, Zhiping, Haldolaarachige, Neel, Young, David P, Wei, Suying, Guo, Zhanhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10255
container_issue 27
container_start_page 10246
container_title Langmuir
container_volume 28
creator Zhu, Jiahua
Gu, Hongbo
Luo, Zhiping
Haldolaarachige, Neel
Young, David P
Wei, Suying
Guo, Zhanhu
description Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π–π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.
doi_str_mv 10.1021/la302031f
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la302031f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e66873271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-3722fea90619de59bb0a6d84af03b85b25d693658b8f2ab2dc186f9aa40fc6393</originalsourceid><addsrcrecordid>eNpt0MlKBDEQBuAgio6jB19AcvEg2JqlV28yo6MwLgc9N9XpikR6kiZJC_P2tjguB09Fwcdf1E_IEWfnnAl-0YFkgkmut8iEZ4IlWSmKbTJhRSqTIs3lHtkP4Y0xVsm02iV7QhRMpkUxIe8z8I2z9AGsC9EPKg4ekzl6844tfXLdGqzpjEV6jxGUW_UumIjhkl53qKI3CrozOje42c4o2JYuDNhI7-HVYnQegwlxzKNP3vXoo8FwQHY0dAEPN3NKXm6un2e3yfJxcTe7WiYg0ywmshBCI1Qs51WLWdU0DPK2TEEz2ZRZI7I2r2SelU2pBTSiVbzMdQWQMq1yWckpOf3KVd6F4FHXvTcr8Ouas_qzu_qnu9Eef9l-aFbY_sjvskZwsgEQxre1B6tM-HU5T3nx14EK9ZsbvB1f_OfgB8zUhL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties</title><source>ACS Publications</source><creator>Zhu, Jiahua ; Gu, Hongbo ; Luo, Zhiping ; Haldolaarachige, Neel ; Young, David P ; Wei, Suying ; Guo, Zhanhu</creator><creatorcontrib>Zhu, Jiahua ; Gu, Hongbo ; Luo, Zhiping ; Haldolaarachige, Neel ; Young, David P ; Wei, Suying ; Guo, Zhanhu</creatorcontrib><description>Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π–π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la302031f</identifier><identifier>PMID: 22703477</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Surface physical chemistry</subject><ispartof>Langmuir, 2012-07, Vol.28 (27), p.10246-10255</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-3722fea90619de59bb0a6d84af03b85b25d693658b8f2ab2dc186f9aa40fc6393</citedby><cites>FETCH-LOGICAL-a345t-3722fea90619de59bb0a6d84af03b85b25d693658b8f2ab2dc186f9aa40fc6393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la302031f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la302031f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26141777$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22703477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jiahua</creatorcontrib><creatorcontrib>Gu, Hongbo</creatorcontrib><creatorcontrib>Luo, Zhiping</creatorcontrib><creatorcontrib>Haldolaarachige, Neel</creatorcontrib><creatorcontrib>Young, David P</creatorcontrib><creatorcontrib>Wei, Suying</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><title>Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π–π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0MlKBDEQBuAgio6jB19AcvEg2JqlV28yo6MwLgc9N9XpikR6kiZJC_P2tjguB09Fwcdf1E_IEWfnnAl-0YFkgkmut8iEZ4IlWSmKbTJhRSqTIs3lHtkP4Y0xVsm02iV7QhRMpkUxIe8z8I2z9AGsC9EPKg4ekzl6844tfXLdGqzpjEV6jxGUW_UumIjhkl53qKI3CrozOje42c4o2JYuDNhI7-HVYnQegwlxzKNP3vXoo8FwQHY0dAEPN3NKXm6un2e3yfJxcTe7WiYg0ywmshBCI1Qs51WLWdU0DPK2TEEz2ZRZI7I2r2SelU2pBTSiVbzMdQWQMq1yWckpOf3KVd6F4FHXvTcr8Ouas_qzu_qnu9Eef9l-aFbY_sjvskZwsgEQxre1B6tM-HU5T3nx14EK9ZsbvB1f_OfgB8zUhL8</recordid><startdate>20120710</startdate><enddate>20120710</enddate><creator>Zhu, Jiahua</creator><creator>Gu, Hongbo</creator><creator>Luo, Zhiping</creator><creator>Haldolaarachige, Neel</creator><creator>Young, David P</creator><creator>Wei, Suying</creator><creator>Guo, Zhanhu</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120710</creationdate><title>Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties</title><author>Zhu, Jiahua ; Gu, Hongbo ; Luo, Zhiping ; Haldolaarachige, Neel ; Young, David P ; Wei, Suying ; Guo, Zhanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-3722fea90619de59bb0a6d84af03b85b25d693658b8f2ab2dc186f9aa40fc6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jiahua</creatorcontrib><creatorcontrib>Gu, Hongbo</creatorcontrib><creatorcontrib>Luo, Zhiping</creatorcontrib><creatorcontrib>Haldolaarachige, Neel</creatorcontrib><creatorcontrib>Young, David P</creatorcontrib><creatorcontrib>Wei, Suying</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jiahua</au><au>Gu, Hongbo</au><au>Luo, Zhiping</au><au>Haldolaarachige, Neel</au><au>Young, David P</au><au>Wei, Suying</au><au>Guo, Zhanhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-07-10</date><risdate>2012</risdate><volume>28</volume><issue>27</issue><spage>10246</spage><epage>10255</epage><pages>10246-10255</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π–π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22703477</pmid><doi>10.1021/la302031f</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2012-07, Vol.28 (27), p.10246-10255
issn 0743-7463
1520-5827
language eng
recordid cdi_crossref_primary_10_1021_la302031f
source ACS Publications
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Surface physical chemistry
title Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanostructure-Derived%20Polyaniline%20Metacomposites:%20Electrical,%20Dielectric,%20and%20Giant%20Magnetoresistive%20Properties&rft.jtitle=Langmuir&rft.au=Zhu,%20Jiahua&rft.date=2012-07-10&rft.volume=28&rft.issue=27&rft.spage=10246&rft.epage=10255&rft.pages=10246-10255&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la302031f&rft_dat=%3Cacs_cross%3Ee66873271%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22703477&rfr_iscdi=true