Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties
Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) re...
Gespeichert in:
Veröffentlicht in: | Langmuir 2012-07, Vol.28 (27), p.10246-10255 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10255 |
---|---|
container_issue | 27 |
container_start_page | 10246 |
container_title | Langmuir |
container_volume | 28 |
creator | Zhu, Jiahua Gu, Hongbo Luo, Zhiping Haldolaarachige, Neel Young, David P Wei, Suying Guo, Zhanhu |
description | Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π–π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality. |
doi_str_mv | 10.1021/la302031f |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la302031f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e66873271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-3722fea90619de59bb0a6d84af03b85b25d693658b8f2ab2dc186f9aa40fc6393</originalsourceid><addsrcrecordid>eNpt0MlKBDEQBuAgio6jB19AcvEg2JqlV28yo6MwLgc9N9XpikR6kiZJC_P2tjguB09Fwcdf1E_IEWfnnAl-0YFkgkmut8iEZ4IlWSmKbTJhRSqTIs3lHtkP4Y0xVsm02iV7QhRMpkUxIe8z8I2z9AGsC9EPKg4ekzl6844tfXLdGqzpjEV6jxGUW_UumIjhkl53qKI3CrozOje42c4o2JYuDNhI7-HVYnQegwlxzKNP3vXoo8FwQHY0dAEPN3NKXm6un2e3yfJxcTe7WiYg0ywmshBCI1Qs51WLWdU0DPK2TEEz2ZRZI7I2r2SelU2pBTSiVbzMdQWQMq1yWckpOf3KVd6F4FHXvTcr8Ouas_qzu_qnu9Eef9l-aFbY_sjvskZwsgEQxre1B6tM-HU5T3nx14EK9ZsbvB1f_OfgB8zUhL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties</title><source>ACS Publications</source><creator>Zhu, Jiahua ; Gu, Hongbo ; Luo, Zhiping ; Haldolaarachige, Neel ; Young, David P ; Wei, Suying ; Guo, Zhanhu</creator><creatorcontrib>Zhu, Jiahua ; Gu, Hongbo ; Luo, Zhiping ; Haldolaarachige, Neel ; Young, David P ; Wei, Suying ; Guo, Zhanhu</creatorcontrib><description>Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π–π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la302031f</identifier><identifier>PMID: 22703477</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Surface physical chemistry</subject><ispartof>Langmuir, 2012-07, Vol.28 (27), p.10246-10255</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-3722fea90619de59bb0a6d84af03b85b25d693658b8f2ab2dc186f9aa40fc6393</citedby><cites>FETCH-LOGICAL-a345t-3722fea90619de59bb0a6d84af03b85b25d693658b8f2ab2dc186f9aa40fc6393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la302031f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la302031f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26141777$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22703477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jiahua</creatorcontrib><creatorcontrib>Gu, Hongbo</creatorcontrib><creatorcontrib>Luo, Zhiping</creatorcontrib><creatorcontrib>Haldolaarachige, Neel</creatorcontrib><creatorcontrib>Young, David P</creatorcontrib><creatorcontrib>Wei, Suying</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><title>Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π–π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0MlKBDEQBuAgio6jB19AcvEg2JqlV28yo6MwLgc9N9XpikR6kiZJC_P2tjguB09Fwcdf1E_IEWfnnAl-0YFkgkmut8iEZ4IlWSmKbTJhRSqTIs3lHtkP4Y0xVsm02iV7QhRMpkUxIe8z8I2z9AGsC9EPKg4ekzl6844tfXLdGqzpjEV6jxGUW_UumIjhkl53qKI3CrozOje42c4o2JYuDNhI7-HVYnQegwlxzKNP3vXoo8FwQHY0dAEPN3NKXm6un2e3yfJxcTe7WiYg0ywmshBCI1Qs51WLWdU0DPK2TEEz2ZRZI7I2r2SelU2pBTSiVbzMdQWQMq1yWckpOf3KVd6F4FHXvTcr8Ouas_qzu_qnu9Eef9l-aFbY_sjvskZwsgEQxre1B6tM-HU5T3nx14EK9ZsbvB1f_OfgB8zUhL8</recordid><startdate>20120710</startdate><enddate>20120710</enddate><creator>Zhu, Jiahua</creator><creator>Gu, Hongbo</creator><creator>Luo, Zhiping</creator><creator>Haldolaarachige, Neel</creator><creator>Young, David P</creator><creator>Wei, Suying</creator><creator>Guo, Zhanhu</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120710</creationdate><title>Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties</title><author>Zhu, Jiahua ; Gu, Hongbo ; Luo, Zhiping ; Haldolaarachige, Neel ; Young, David P ; Wei, Suying ; Guo, Zhanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-3722fea90619de59bb0a6d84af03b85b25d693658b8f2ab2dc186f9aa40fc6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jiahua</creatorcontrib><creatorcontrib>Gu, Hongbo</creatorcontrib><creatorcontrib>Luo, Zhiping</creatorcontrib><creatorcontrib>Haldolaarachige, Neel</creatorcontrib><creatorcontrib>Young, David P</creatorcontrib><creatorcontrib>Wei, Suying</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jiahua</au><au>Gu, Hongbo</au><au>Luo, Zhiping</au><au>Haldolaarachige, Neel</au><au>Young, David P</au><au>Wei, Suying</au><au>Guo, Zhanhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-07-10</date><risdate>2012</risdate><volume>28</volume><issue>27</issue><spage>10246</spage><epage>10255</epage><pages>10246-10255</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π–π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22703477</pmid><doi>10.1021/la302031f</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2012-07, Vol.28 (27), p.10246-10255 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_crossref_primary_10_1021_la302031f |
source | ACS Publications |
subjects | Chemistry Exact sciences and technology General and physical chemistry Surface physical chemistry |
title | Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanostructure-Derived%20Polyaniline%20Metacomposites:%20Electrical,%20Dielectric,%20and%20Giant%20Magnetoresistive%20Properties&rft.jtitle=Langmuir&rft.au=Zhu,%20Jiahua&rft.date=2012-07-10&rft.volume=28&rft.issue=27&rft.spage=10246&rft.epage=10255&rft.pages=10246-10255&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la302031f&rft_dat=%3Cacs_cross%3Ee66873271%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22703477&rfr_iscdi=true |